

Anforderungen an und Grenzen von CO₂-Kompensation für den Klimaschutz

Analyse, Kriterien und Leitfaden für sinnvolle Kompensation

Hanna Schultz David Lübking Dr. Dietrich Brockhagen atmosfair gGmbH, September 2015

Zusammenfassung 4

Glossar 7

TEIL I: CO2-REDUKTION UND KOMPENSATION 8

- 1 Einleitung und Motivation 8
- 2 CO₂-Vermeidung und -Reduktion 9
 - 2.1 Überblick 9
 - 2.2 Flexible Mechanismen: "An anderer Stelle reduzieren" 10
- 3 Kompensation 11
 - 3.1 Überblick 11
 - 3.2 Produktkompensation 11
 - 3.3 Ablasshandel und Rebound-Effekt 12
 - 3.4 Kompensation auf dem Weg zum globalen 2-Grad- Ziel? 13
 - 3.5 Vermeidungskosten 14
 - 3.6 Fazit 17

TEIL II: ANFORDERUNGEN AN EINE SINNVOLLE KOMPENSATION 19

- 4 Einleitung: Vermeiden Reduzieren Kompensieren, Leitfaden für sinnvolle Kompensation 19
- 5 Drei verschiedene Produktklassen 19
 - 5.1 Überblick 19
 - 5.2 Klasse I: Die Unverträglichen 22
 - 5.3 Klasse II: Die Auslaufmodelle 23
 - 5.4 Klasse III: Die Wandelbaren 24
 - 5.5 Fazit 24
- 6 Anforderungen an die Produkte und Dienstleistungen 25
 - 6.1 Überblick 25
 - 6.2 Ausschluss ethisch nicht vertretbarer Produkte 27
 - 6.3 Schritt 1: Existiert eine Alternative? 27
 - 6.4 Alternative ist klimafreundlicher? 27
 - 6.5 Weitere Umwelt- und Sozialfaktoren 28
 - 6.6 Alternative ist realistisch? 29
 - 6.6.1 Alternative in Funktion und Eigenschaften? 29
 - 6.6.2 Alternative realistisch im Preis? 30
 - 6.6.3 Alternative realistisch im Zeitaufwand? 30

- 6.6.4 Fazit 31
- 6.7 Schritt 2: Ist ein technologisches Entwicklungspotenzial vorhanden? 31
- 6.8 Preis der Kompensation 31
- 6.9 Kompensation von Produktklassen / Hersteller 32

TEIL III Produktklassen in der Praxis 33

7 Überblick 33

- 7.1 Energie 34
- 7.2 Lebensmittel 36
- 7.3 Mobilität 38
- 7.4 Logistik 41
- 7.5 Freizeit / Lifestyle 43
- 7.6 Büro, Verwaltung und Beschaffung 45
- 7.7 Andere Güter (T-Shirts, Blumenerde, Rosen) 49

8 Literaturverzeichnis 52

Zusammenfassung

Die vorliegende Studie untersucht und problematisiert die Wirkung von CO₂-Kompensation für den Klimaschutz. Die Studie nutzt Literatur, empirische Erhebungen sowie eigene Analysen und Erfahrungen von atmosfair bei der CO₂-Kompensation.

Im Fokus der Studie steht die Produktkompensation, bei der Massenprodukte für Verbraucher wie Fleisch, Strom, Kleidung, Drucker oder Autofahren als "klimaneutral" vermarktet werden, weil die CO₂- Emissionen des Produktes in Klimaschutzprojekten andernorts wieder eingespart und damit kompensiert werden. Solche Produkte gibt es immer mehr zu kaufen und stellen die Verbraucher vor die Frage, ob dies wirkungsvoller Klimaschutz ist.

Keine Werturteile über Kundenwünsche

Die Studie hinterfragt dabei nicht den Wunsch eines Kunden nach bestimmten Produkten, setzt also nicht normativ eine Welt mit z.B. veganer Ernährung oder ohne Fernreisen als Ziel. Sie untersucht ausschließlich die Frage, ob bei gegebenem Produktwusch des Kunden das Erwerben eines "klimaneutralen" Produkts statt des konventionellen Produkts aus Klimaschutzsicht sinnvoll ist oder nicht.

- Teil I der Studie analysiert das Problem aus Sicht der Klimawissenschaft.
- Teil II entwickelt ein praktisches Prüfschema, das Verbraucher und Verbände etc. auf Produkte anwenden können. Ergebnis des Schemas ist, ob bei der untersuchten Produktart die CO₂-Kompensation sinnvoll sein kann oder nicht.
- Teil III zeigt dann exemplarisch die Anwendung des Pr
 üfschemas aus Teil II auf Produkte wie Fleisch, Strom, Autofahren, Lifestyle Produkten etc.

Teil I: CO₂-Reduktion vs. Kompensation

Kompensation ist allein nicht zielführend, sondern kann nur flankierend zur notwendigen CO₂-Reduktion an der Quelle durch Innovation und Verbreitung der nötigen Technologien und Verhaltensweisen sinnvoll sein. Selbst wenn alle Industrieländer ihre CO₂-Emissionen vollständig in Entwicklungsländern in perfekten Projekten kompensieren würden und damit alle Menschen in den Industrieländern dem Marketing nach "klimaneutral" leben würden, kann damit das globale 2°C Klimaschutzziel nicht erreicht werden. Dies liegt daran, dass schon die verbleibenden Emissionen der Industrieländer zu viel für das 2-Grad-Ziel sind.

Umgekehrt birgt aber die Kompensation von CO₂-intensiven Produkten und Dienstleistungen die Gefahr, mit ihren günstigen Kosten den Wettbewerb zur Weiterentwicklung klimafreundlicher Produkte zu beeinträchtigen.

Teil II: Anforderungen an eine integre CO₂-Kompensation

Kompensation kann aus Klimasicht sinnvoll sein, wenn u.a. die folgenden Mindestbedingungen für ein Produkt oder eine Dienstleistung erfüllt sind:

- Es gibt keine realistische Alternative, die weniger CO₂ verursacht. Die Studie entwickelt Kriterien, die die Alternativen analysieren und bewertbar machen.
- Es ist ein technologisches Entwicklungspotential hin zu einem CO₂-freien oder weitgehend CO₂-armen Produkt vorhanden.
- Die Emissionen des Produkts werden vollständig erfasst.

Alle Produkte und Dienstleistungen lassen sich in drei Klassen einteilen, hier mit Beispielen:

- Die Unverträglichen: Hierzu gehören Produkte, die eine 2-Grad-Welt mit 8 Milliarden Menschen nicht verträgt, wie z.B. täglicher Fleischkonsum aus Massentierhaltung. Die Kompensation von Steakhäusern etc. ist damit aus Klimaschutz nur eine künstliche Verlängerung einer Sackgasse und damit zweifelhaft.
- 2. Die Auslaufmodelle: Dies sind Produkte, für die es jetzt schon eine gleichwertige klimafreundliche technische Alternative gibt. Die Entwicklung und Aufbau dieser neuen Klimaschutztechnologien wird gebremst, wenn Geld der Verbraucher stattdessen in die Kompensation und damit in die Verbreitung von alten bzw. bestehenden Technologien fließt. Ein Beispiel ist die fossil basierte Stromproduktion, egal ob gegenüber Firmen- oder Endkunden (klimaneutrale Website, klimaneutraler Haushalt etc.). Diese Stromproduktion zu kompensieren ist aus Klimasicht ein Schritt in die falsche Richtung.
- 3. **Die Wandelbaren:** Dies sind Produkte, die prinzipiell noch zu CO₂-armen Produkten entwickelt werden können, für die die notwendige Technologie aber derzeit noch nicht oder nicht weit genug für den Markt entwickelt ist. Ein Beispiel sind Langstreckenflugzeuge. Für diese gibt es potentiell saubere CO₂-freie synthetische Treibstoffe die zusammen mit neuen Flugzeugkonzepten ein CO₂-armes Fliegen in der Zukunft ermöglichen. Heute sind diese Technologien aber nicht so weit verfügbar, dass eine Airline sie kaufen könnte, deswegen kann der Kunde sie auch nicht als (teurere) Alternative wählen. Nur in dieser Kategorie ist Kompensation sinnvoll, da sie nicht die bessere Lösung ausbremst (Auslaufmodelle) oder eine Sackgasse verlängert (Die Unverträglichen).

Hersteller

Wenn ein Hersteller mehrere Produkte herstellt und alle kompensieren will, dann sollte die Grundlage dafür eine Selbstverpflichtung des Herstellers sein, in denen er seinen CO₂-Fußabdruck gemäß der Methode der Science Based Targets Initiative kompatibel mit dem 2°C-Erwärmungsziel mindert und dabei entlang des Zeitplanes die CO₂-intensiven Produkte durch klimafreundliche ersetzt. Nur so ist ein zielführendes Verhältnis zwischen Vermeiden, Reduzieren und Kompensieren gegeben.

Teil III, Produktklassen in der Praxis

Die folgenden Produkte und Dienstleistungen werden in der Studie beispielhaft untersucht und nach der obigen Methode bewertet.

Produktkategorie	Kapitel	Produktbeispiel	CO ₂ - Kompensation sinnvoll?
Energie	7.1	 Konventioneller Strom 	Nein
		- Ölheizung	Nein
Lebensmittel	7.2	- Fleisch	Nein
		 Tomaten aus Spanien 	Nein
Mobilität	7.3	- Autofahren	Nein
		 Interkontinentalflug 	Ja
		 Kurzstreckenflug 	Nein
Dienstleistungen	7.4	 Paketversand 	Ja
		 Umzug per LKW 	Ja
Freizeit / Lifestyle	7.5	 Kreuzfahrt 	Ja
		 Gletscherhotel 	Nein
Büromaterial,	7.6	- Telefon- und	Nein
Beschaffung und		Internetanschluss	
elektronische Geräte		- Laptop	Nein
		 Klimaneutral Drucken 	Nein
Güter	7.7	- T-Shirt aus Baumwolle	Nein
		- Torf	Nein
		 Transfair Rosen aus 	Nein
		Kenia	

Glossar

Der Begriff "Produkt" schließt gleichermaßen Dienstleistungen ein.

Der Begriff "Emissionen" bezieht sich im Folgenden auf die Gesamtheit der im Rahmen dieser Studie relevanten klimawirksamen Emissionen und Senken.

CCS	Carbon Capture and Storage, CO ₂ -Abscheidung und -Speicherung
CDM	Clean Development Mechanism, Mechanismus für umweltverträgliche
	Entwicklung
CO ₂	Kohlendioxid
CO ₂ eq	CO ₂ -Äquivalent
cradle-to-gate	bei einer Ökobilanz betrachtete Prozessabfolge "von der Wiege bis
	zum Fabriktor"
cradle-to-grave	bei einer Ökobilanz betrachtete Prozessabfolge "von der Wiege bis
	zur Bahre"
EL	Entwicklungsland; hier: non-Annex I-Staaten nach Kyoto Protokoll
EU ETS	European Union Emissions Trading Scheme, EU-Emissionshandel
GDP	Gross domestic product, Bruttoinlandsprodukt
GHG-Standard	"Product Life Cycle Accounting and Reporting Standard" des
	Greenhouse Gas Protocol
GWP	Global Warming Potential
IL	Industrieland; hier: Annex B-Staaten nach Kyoto Protokoll
IPCC	Intergovernmental Panel on Climate Change
JI	Joint Implementation, Gemeinschaftsreduktion
Non-CO ₂	Weitere Treibhausgase neben CO ₂
ÖPNV	Öffentlicher Personennahverkehr
PAS 2050	Publicly available Specification 2050:2011 "Specification for the
	assessment of the life cycle greenhouse gas emissions of goods and
	services"
PCF	Product Carbon Footprint – CO ₂ -Fußabdruck
ppm	Parts per million, "Teile von einer Million", entspricht dem Faktor 10 ⁻⁶
THG	Treibhausgase

Tabelle 1: Glossar

TEIL I: CO₂-REDUKTION UND KOMPENSATION

1 Einleitung und Motivation

"Dieses Produkt wurde klimaneutral hergestellt." – Immer mehr Hersteller werben mit der Aussage, ihre Produkte "kompensiert" anzubieten. Durch den Kauf der entsprechenden Menge an CO₂-Zertifikaten werden die bei der Herstellung des Produkts verursachten Emissionen an anderer Stelle eingespart und somit wird die Klimawirkung des Produkts – in der Gesamtbetrachtung – kompensiert.

Bei der Frage nach einer sinnvollen Kompensation setzen sich viele Studien und Ratgeber mit einer technisch korrekten und einheitlichen Abwicklung der Kompensation auseinander, um den nachhaltigen Erfolg der Maßnahme sicherzustellen. Im Vordergrund stehen hierbei die methodische Erfassung und Bilanzierung der Produktemissionen (Product Carbon Footprint, PCF) einerseits und die projektbasierten Ausgleichsmaßnahmen zur Generierung und Stilllegung der entsprechenden Zertifikate andererseits (vgl. Abbildung 1). Inzwischen existieren verschiedene Standards, die mit Mindestanforderungen an die Ausgestaltung der Kompensation einen einheitlichen Rahmen schaffen und zur Erhöhung der Transparenz gegenüber dem Verbraucher beitragen.

Um die Frage nach einer sinnvollen Kompensation ganzheitlich zu erörtern, geht die vorliegende Studie einen Schritt zurück und setzt beim Produkt selbst an: Ist es sinnvoll, ein kompensiertes Steak anzubieten? Ist es sinnvoll, eine Autofahrt zu kompensieren, wenn CO₂-ärmere Transportmittel zur Verfügung stehen?

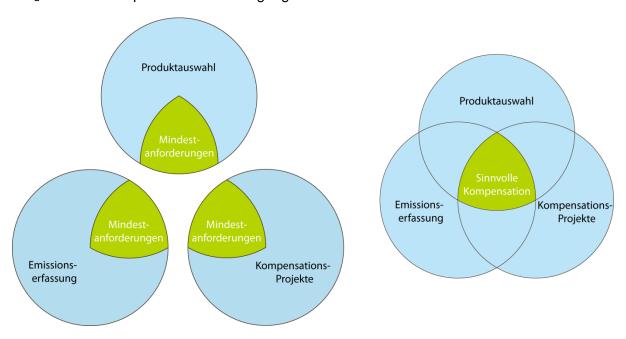


Abbildung 1: Untersuchungsbereiche mit Mindestanforderungen für eine sinnvolle Kompensation. Erst wenn die Mindestanforderungen an eine Kompensation in allen drei Bereichen erfüllt sind, kann eine sinnvolle Kompensation erreicht werden. Für die Bereiche "Emissionserfassung" und "Kompensationsprojekte" existieren internationale Standards. Die vorliegende Studie untersucht den Bereich "Produktauswahl".

Bisherige Untersuchungen und Stellungnahmen stützen sich diesbezüglich auf Empfehlungen wie den Vorrang von Vermeidung und Reduktion vor Kompensation¹ oder den Verzicht auf die Kompensation "vermeidbarer hoher Emissionen"², geben jedoch keine quantitative Entscheidungshilfe im Einzelfall.

Diese Studie untersucht im Vorfeld der eigentlichen Kompensation, inwiefern eine sinnvolle Kompensation vom zu kompensierenden Produkt oder einer Dienstleistung selbst abhängt. Im Zuge dessen werden universell anwendbare Kriterien entwickelt, anhand derer entschieden werden kann, welche Produkte sich sinnvollerweise für eine Kompensation eignen. Ziel ist die Entwicklung eines Leitfadens, ob und wie Produkte sinnvoll kompensiert angeboten werden können.

Keine Werturteile über Konsumenten und Produkte

Dieser Ratgeber argumentiert und bewertet ausschließlich aus Klimasicht und bewertet nicht Entscheidungen und Präferenzen von Konsumenten. Konkret bedeutet das, dass der Kundenwunsch nach Produkten wie ein Wochenendurlaub auf Mallorca oder eines Geländewagens nicht hinterfragt wird, sondern lediglich beurteilt werden soll, inwiefern eine Kompensation solcher Produkte aus Klimasicht sinnvoll ist.

2 CO₂-Vermeidung und -Reduktion

2.1 Überblick

Bereits im Jahr 1975 wurde erstmals das sog. "Zwei-Grad-Ziel" als Richtwert für die Klimapolitik vorgeschlagen.³ 2005 sprach sich eine Gruppe von hochrangigen internationalen Experten, die International Climate Change Taskforce, dafür aus, den Anstieg der globalen Mitteltemperatur gegenüber dem vorindustriellen Niveau auf 2 Grad Celsius zu begrenzen. Jenseits dieses Wertes steigt, so der wissenschaftliche Konsens, das Risiko extremer Auswirkungen des Klimawandels auf das Ökosystem und die Gesellschaft stark an.

In Anlehnung daran hat der Europäische Rat im Februar 2011 das Ziel bestätigt, die Treibhausgasemissionen der EU bis zum Jahr 2050 um 80 bis 95% zu verringern.⁴

Das im Jahr 1997 verabschiedete Kyoto-Protokoll der Klimarahmenkonvention sieht eine THG-Reduktion für Industrieländer bis zum Jahr 2012 vor. Diejenigen Industrieländer, die das Abkommen ratifiziert haben (Annex-B Staaten, im Folgenden IL), haben sich einem länderspezifischen Emissionsminderungsziel verpflichtet. Laut der Vereinbarung soll das Reduktionsziel hauptsächlich durch nationale, also "interne" Minderungsmaßnahmen erreicht werden. Zusätzlich können IL sogenannte flexible Mechanismen nutzen, durch die andernorts eingesparte Emissionen dem jeweiligen Land zugerechnet werden können.

9

¹ UBA 2008, IFEU 2010

² UBA 2008

³ JAEGER, CARLO C. 2010

⁴ EU 2011

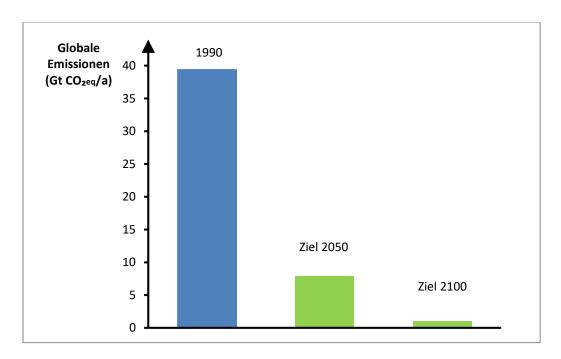


Abbildung 2: Globale THG-Emissionen 1990 und notwendiger Reduktionspfad im Rahmen des 2-Grad-Ziels⁵

2.2 Flexible Mechanismen: "An anderer Stelle reduzieren"

Im Rahmen des Kyoto-Protokolls wurden drei marktbasierte Reduktionsmechanismen eingeführt, die es den teilnehmenden Ländern erlauben, die Emissionsminderung dort durchzuführen, wo es für sie am kostengünstigsten ist:

- Emissionshandel
- Clean Development Mechanism (CDM)
- Joint Implementation (JI)

Kerngedanke hierbei ist, dass es unerheblich ist, an welchem Ort die THG-Einsparung stattfindet, sondern am Ende der Frist die globale Gesamtreduktion stimmen muss. Die Einsparung erfolgt somit nicht intern bzw. auf nationaler Ebene, sondern an anderer Stelle.

Mit dem Emissionshandel wurde die Idee eines " CO_2 -Marktes" etabliert, wonach THG-Emissionen in Form von Verschmutzungsrechten zwischen den teilnehmenden Ländern frei gehandelt werden können. Daneben existieren weitere Emissionshandelssysteme auf nationaler oder regionaler Ebene. Der Europäische Emissionshandel (EU ETS) ist das derzeit größte operierende CO_2 -Handelssystem, welches über den Horizont des Kyoto-Protokolls hinaus bis mindestens 2020 festgeschrieben ist.

Mit dem CDM und dem JI führt das Kyoto-Protokoll zwei Mechanismen ein, um projektbasierte Einsparungen in anderen Ländern zu erreichen und dadurch entsprechende

_

⁵ IPCC 2007 (Globale Emissionen 1990), HÖHNE, NIKLAS UND MOLTMANN, SARA 2009

⁶ Da CO₂ den größten Anteil am anthropogenen Treibhauseffekt hat, wird vereinfachend von "carbon market" oder "CO₂"-Markt" gesprochen. Beim Emissionshandel im Rahmen des Kyoto-Protokolls sind jedoch grundsätzlich weitere THG einbezogen.

Verschmutzungsrechte zu erwerben. Beim JI kooperieren jeweils zwei IL⁷ miteinander, bei CDM-Projekten haben IL die Möglichkeit, emissionsmindernde Maßnahmen in Entwicklungsund Schwellenländern (EL⁸) durchzuführen. Dadurch wird eine Win-Win-Situation
geschaffen: das ausführende Land kann seine Einsparungen flexibel und kosteneffizient
gestalten, während das Gastland vom Technologietransfer und den Investitionen profitiert.
Besonders CDM-Projekte bieten die Möglichkeit, auf lokaler Ebene klimafreundliche
Technologien zu etablieren und so EL bei ihrem Weg hin zu einer nachhaltigen Entwicklung
zu unterstützen.

Neben diesen etablierten CO₂-Reduktionsinstrumenten des Kyoto-Protokolls existieren weitere Standards, um Emissionsminderungen zu verifizieren und weiterzureichen, wie z.B. der Verified Carbon Standard. Diese werden ausschließlich auf dem freiwilligen Kompensationsmarkt genutzt (vgl. Kapitel 3.1).⁹

3 Kompensation

3.1 Überblick

Bei einer Kompensation wird diejenige Menge an THG, die bei einem Vorgang freigesetzt wird, an anderer Stelle eingespart bzw. aktiv der Atmosphäre entzogen. Die Klimawirkung des ursprünglichen Vorgangs wird somit durch die Kompensation ausgeglichen, die daher auch "Ausgleichsmaßnahme" genannt wird. Gegenüber dem "Business-as-usual"-Szenario ohne Kompensation bedeutet dies, dass die dem Vorgang entsprechende Menge an Emissionen vermieden wird.

Grundsätzlich lassen sich zwei Arten der Kompensation unterscheiden: einerseits die Kompensation als rechtlich-ökonomisches Instrument im Rahmen der Reduktionsverpflichtungen des Kyoto-Protokolls (vgl. Kapitel 2.2), andererseits die freiwillige Kompensation, zu der auch die Produktkompensation zählt. Ein Großteil der Kompensationsprojekte wird von IL in EL durchgeführt.

3.2 Produktkompensation

Viele Unternehmen bieten inzwischen Produkte und Dienstleistungen "CO₂-kompensiert" oder "klimaneutral" an. Die Emissionen, die bei der Herstellung eines Produkts oder Abwicklung einer Dienstleistung freigesetzt werden, werden vom Unternehmen bilanziert und kompensiert, was dann i.d.R. entsprechend kommuniziert wird. Der Kunde kauft somit neben dem eigentlichen Produkt den Ausgleich der durch das Produkt verursachten Klimaemissionen.

Der Hinweis auf Kompensation eines Produktes stellt einen Marktvorteil dar. Einer Verbraucherumfrage im Auftrag der Verbraucherzentrale Bundesverband e.V. zufolge achten rund zwei Drittel der Befragten auf Klimaschutzwerbung beim Kauf von Produkten,

⁷ Im Folgenden werden mit "Industrieländer" (IL) vereinfachend die am Kyoto-Protokoll teilnehmenden Annex I-Staaten (Annex B-Staaten) bezeichnet.

⁸ Im Folgenden werden mit "Entwicklungsländer" (EL) vereinfachend die am Kyoto-Protokoll teilnehmenden Non-Annex I-Staaten bezeichnet.

⁹ UBA 2010

rund ein Drittel der Befragten zieht Argumente für den Klimaschutz in ihre Kaufentscheidung ein.¹⁰

Problematisch ist hierbei, dass es bisher kaum einheitliche Standards zur Erfassung der Produktemissionen gibt. Welche Prozesse des Lebenszyklus des Produkts bei der Bilanzierung betrachtet werden, ist somit dem jeweiligen Unternehmen überlassen und wird gegenüber dem Kunden oft nicht transparent dargestellt. So kann es vorkommen, dass ein Unternehmen den gesamten Lebenszyklus des Produkts inkl. Förderung der verwendeten Rohstoffe, Transport etc. bilanziert und dabei alle klimarelevanten Emissionen einbezieht, während ein anderes Unternehmen unter einem "product carbon footprint" (PCF) lediglich die CO₂-Emissionen des Energieverbrauchs zur Produktherstellung versteht.

In den letzten Jahren haben sich mehrere Institutionen auf nationaler und internationaler Ebene mit der Frage befasst, wie THG-Emissionen von Produkten und Dienstleistungen einheitlich erfasst werden können. Eine erste konsistente Methodik für die Ermittlung des PCF wurde mit der Ende 2008 in Großbritannien veröffentlichten Norm "Specification for the assessment of the life cycle greenhouse gas emissions of goods and services" (PAS 2050) geschaffen.¹¹ Auf internationaler Ebene existiert seit Oktober 2011 die Richtlinie "Product Life Cycle Accounting and Reporting Standard" (GHG-Standard) des Greenhouse Gas Protocol. Die internationale Norm ISO 14067 "Carbon footprint of products" ist derzeit noch in Bearbeitung, eine Entwurfsfassung wurde Anfang 2012 veröffentlicht.¹²

3.3 Ablasshandel und Rebound-Effekt

Kompensation birgt die Gefahr, als "Ablasshandel"¹³ verstanden zu werden und durch induzierte Mehrnachfrage den eigentlichen CO₂-Einspareffekt zunichte zu machen. Dahinter steckt der sogenannte "psychologische Rebound-Effekt"¹⁴, der einen Zusammenhang zwischen Effizienzsteigerung und Mehrnachfrage herstellt und auch auf die Kompensation übertragen werden kann:

Durch Kompensation kann ein prinzipiell klimaschädliches Produkt aus Kundensicht aufgewertet und als ökologisch vertretbar empfunden werden. Dies kann zur Folge haben, dass der Kunde dieses Produkt fortan häufiger erwirbt, eben weil das Produkt "klimafreundlich" ist ("Moral-Hazard-Effekt"). Auf die ursprüngliche Intension der Emissionsminderung übertragen heißt das, dass sich die anfangs erzielte Einsparung unter Umständen amortisiert und im Extremfall letztendlich sogar mehr Emissionen verursacht werden.

Eine indirekte Form des Rebound-Effekts stellt der "Moral-Licensing-Effekt" dar: Der Erwerb eines kompensierten Produkts kann die Nachfrage nach anderen klimaschädlichen Produkten steigern. So kann es ein Kunde durch den Kauf eines klimafreundlichen Produkts für gerechtfertigt halten, an anderer Stelle "klimaschädlich" zu handeln, da er ja bereits etwas Gutes fürs Klima getan hat. In der Gesamtbetrachtung ist das Ergebnis dasselbe wie

¹⁰ PROGNOS 2010

¹¹ PCF-PROJEKT 2009

¹² DIN 2012

¹³ UBA 2008

¹⁴ SANTARIUS 2012

oben: Der mit der Kompensation verbundene Einsparungseffekt kann unter Umständen aufgelöst werden.

Bei einem Produkt, welches per se klimaunverträglich ist oder für welches eine klimafreundliche Alternative existiert, kann eine Auslobung als "klimaneutral" also doppelt zum Nachteil gereichen: zum einen kann die Produktkompensation den Erwerb eines solchen Gutes moralisch "legitimieren" und dessen Klimaschädlichkeit dadurch gemeinhin abgemildert werden, um dann zum anderen eine Mehrnachfrage nach diesem oder anderen im Sinne des Klimas "falschen" Produkten zu stimulieren.

3.4 Kompensation auf dem Weg zum globalen 2-Grad- Ziel?

Die Einhaltung der 2-Grad-Ziels erfordert eine Reduktion der globalen THG-Emissionen bis 2050 von mindestens 80% gegenüber 1990, bis 2100 müssten die weltweiten Emissionen auf nahezu Null heruntergefahren werden (vgl. Kapitel 2.1). In welchem Umfang kann die Kompensation zur notwendigen Reduktion beitragen?

Das Gesamtpaket "Vorgang + Kompensation" ist immer mit einem unverändert hohen THG-Ausstoß im Verursacherland (i.d.R. IL) und einer entsprechenden THG-Minderung im kompensierenden Land (i.d.R. EL) verbunden.¹⁵

Würde man theoretisch versuchen, die Emissionen der IL ausschließlich über Kompensation zu mindern, könnten die globalen Emissionen bis 2050 bzw. bis 2100 nicht in benötigtem Umfang gesenkt werden (vgl. Abbildung 3). Zwar würde in diesem Szenario der THG-Ausstoß der EL weitestgehend gesenkt, jedoch würden die IL weiterhin Emissionen in vollem Umfang ausstoßen. Die globalen "Restemissionen" wären demnach weitaus höher als der mit der Erreichung des 2-Grad-Ziels vereinbare THG-Ausstoß.

_

¹⁵ Diese Betrachtung setzt voraus, dass durch die Möglichkeit einer Kompensation keine zusätzliche Nachfrage und somit zusätzliche Emissionen gegenüber der "baseline" geschaffen werden.

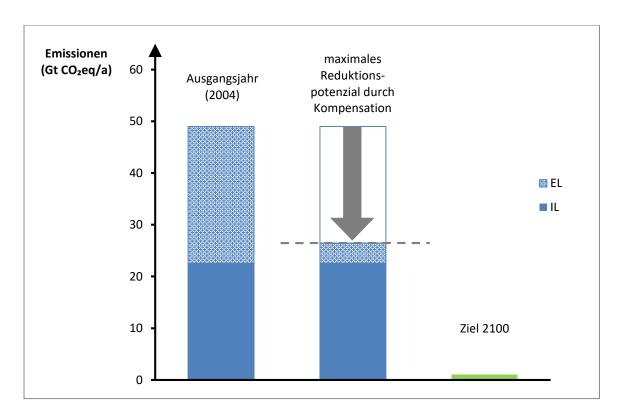


Abbildung 3: Maximales globales Reduktionspotenzial durch Kompensation. Würden alle Emissionen der IL durch entsprechende Reduktion in den EL kompensiert, könnten die globalen Emissionen nicht in benötigtem Umfang gesenkt werden.¹⁶

Oder anders ausgedrückt: alleinige Kompensation ist langfristig nicht zielführend, vielmehr müssen die IL selbst ihre internen Emissionen in großem Umfang verringern. Kompensation kann demnach nur eine begleitende Maßnahme sein.

3.5 Vermeidungskosten

Die Kosten einer Kompensation werden aufgewandt, um die entsprechende Menge an CO₂ andernorts einzusparen. Ganz allgemein können Investitionskosten, die zur Einsparung von THG aufgewendet werden, als Vermeidungskosten interpretiert werden.

Im Folgenden soll eine grobe Abschätzung der langfristigen Vermeidungskosten erfolgen, die im Rahmen der Einhaltung des 2-Grad-Ziels entstehen. Ein Vergleich mit den derzeitigen Kompensationskosten soll zeigen, dass die Kompensation allein schon aus rein ökonomischen Gesichtspunkten keine ganzheitliche Klimalösung abbildet.

Das WBGU wertet verschiedene Studien zur Kostenabschätzung für die Transformation der weltweiten Energiesysteme hin zu einer Stabilisierung der CO₂eq - Konzentration im Rahmen des 2-Grad-Ziels aus. Je nach Modellparameter und Stabilisierungsszenario belaufen sich die Gesamtkosten einer Dekarbonisierungsstrategie auf 0,7 bis 5,5 % des globalen Bruttoinlandsprodukts (BIP).¹¹7

_

¹⁶ THG-Emissionen 2004: IPCC 2007b

¹⁷ WBGU 2011

In einer Studie von Edenhofer (2009) wird der akkumulierte CO₂-Ausstoß im Zeitraum von 2000 bis 2049 für verschiedene Szenarien prognostiziert. Die Differenz an CO₂-Emissionen zwischen dem 2-Grad-Stabilisierungsszenario und dem Business-as-usual-Szenario beträgt 1.042 Gt CO₂. Diese Menge entspricht in erster Näherung denjenigen THG-Emissionen, die im Zuge der o.g. Transformation der Energiesysteme eingespart werden müssen. 19

Die Entwicklung des globalen BIP verlief im letzten Jahrzehnt nahezu linear²⁰. Nimmt man eine Weiterführung dieses Trends an, lassen sich die Kosten des Umbaus des Energiesystems im Zeitraum von 2000 bis 2049 auf 35 bis 272 Billionen Euro beziffern.

Mit diesen Angaben lässt sich eine Bandbreite für die langfristigen CO₂-Vermeidungskosten von 30 bis 260 Euro pro Tonne CO₂eq abschätzen. Um also die Klimaziele im Rahmen der 2-Grad-Vorgabe zu erreichen, kann man davon ausgehen, dass sich die Kosten zur Einsparung einer Tonne CO₂ langfristig in jenem Bereich bewegen werden. Diese Werte sind tendenziell noch zu niedrig, da in der o.g. Kostenabschätzung lediglich die Investitionskosten einer Dekarbonisierung, nicht jedoch Schadens- und Anpassungskosten berücksichtigt wurden.²¹

Vergleicht man nun obige Kostenabschätzung mit den Preisen, die bei der Kompensation zu entrichten sind, so stellt man fest, dass sich letztere auf weitaus niedrigerem Niveau bewegen. atmosfair bietet die Kompensation einer Tonne CO₂ zu einem Preis von 23 Euro pro Tonne an, der Preis für Europäische Emissionsrechte lag im ersten Halbjahr 2012 durchschnittlich unter 10 Euro.²² Doch weshalb ist Kompensation so billig?

15

¹⁸ EDENHOFER, OTTMAR ET AL. 2009

¹⁹ Das hier betrachtete Szenario aus EDENHOFER, OTTMAR ET AL. 2009 bildet die Stabilisierung auf 410 ppm CO₂ bis 2050 ab, ohne Berücksichtigung von Non-CO₂. Die angegebene Wahrscheinlichkeit von 54%, das 2-Grad-Ziel zu erreichen, deckt sich mit derjenigen des oben genannten Stabilisierungsniveaus von 445–490 ppm CO₂eq. Daher kann die resultierende Menge an CO₂ hier auch als Gesamtmenge an THG mit derselben Klimawirkung (CO₂eq) interpretiert werden.
²⁰ IM 2011

²¹ WBGU 2011

²² EEX 2012

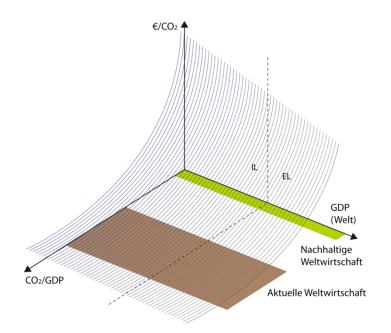


Abbildung 5: CO₂-Vermeidungskostenfläche, Bereiche der aktuellen und einer nachhaltigen Weltwirtschaft. Da der technologische Wandel hin zu einer CO₂-armen Produktionsweise mit hohen Investitionskosten verbunden ist, steigen die Vermeidungskosten bei sinkender CO₂-Intensität (ČO₂-/GDP) stark an. Je mehr Weltwirtschaft erfasst wird (GDP (Welt)), desto flacher wird die Vermeidungskostenfläche, da Technologien bei zunehmender Marktdurchdringung tendenziell günstiger werden. Eine nachhaltige, mit dem 2-Grad-Ziel vereinbare Weltwirtschaft muss nahe der "CO2/GDP"-Nulllinie stattfinden.

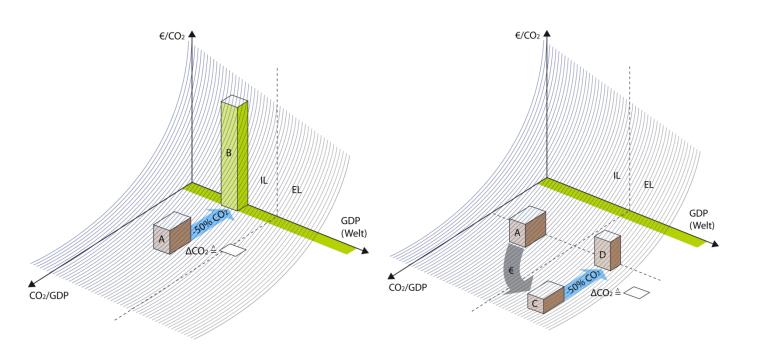


Abbildung 4: CO₂-Reduktion um 50% durch a) Innovation und b) Kompensation. Das Volumen der Quader bildet die Vermeidungskosten, die Grundfläche der Quader die Menge an anfallendem CO₂ für eine bestimmte Wirtschaftsleistung ab. Um die CO₂-Intensität und damit die Emissionen um 50% zu senken, hat der Erbringer einer Wirtschaftsleistung "A" im IL zwei Möglichkeiten: a) Innovation im IL oder b) Kompensation im EL. Bei Option a) verbessert er seinen Produktionsprozess mithilfe innovativer Technik, wofür er zwar hohe Kosten aufwenden muss, er jedoch in den Bereich der langfristig nachhaltigen Weltwirtschaft rückt. Bei Option b) investiert er in die Optimierung eines Produktionsprozesses "C" im EL, der mit Hilfe bestehender und daher kostengünstiger Technik effizienter gestaltet wird ("D") und so die Emissionen an anderer Stelle eingespart. Zwar stellt Option b) in der Regel die kostengünstigere dar. Durch fehlende Innovation jedoch bleibt der Ausgangsprozess "A" unverändert bestehen, und auch der Produktionsprozess "C" im EL rückt maximal bis zu einer vergleichbaren CO₂-Intensität vor (hier: gestrichelte Linie), erreicht aber niemals den Bereich einer nachhaltigen Weltwirtschaft.

Abbildung 5 skizziert die CO₂-Vermeidungskostenfläche. Die Vermeidungskosten sind niedrig im Bereich hoher CO₂-Intensität der Wirtschaft ("CO₂/GDP"). Da der technische Wandel hin zu einer CO₂-armen Produktion mit hohen Investitions- und Forschungskosten verbunden ist, steigen die Vermeidungskosten stark an, wenn sich die Weltwirtschaft der CO₂/GDP-Nulllinie nähert. Dies lässt sich mit folgendem Beispiel illustrieren: Allein durch Änderung des Nutzerverhaltens – also mit vergleichsweise wenig bis gar keinem finanziellen Aufwand – lässt sich der Heizverbrauch im Eigenheim um bis zu 50% reduzieren.²³ Um jedoch eine Reduktion der Heizemissionen auf quasi Null zu gewährleisten, ist eine mit höheren Investitionskosten verbundene Umstellung auf regenerative Heiztechnik nötig. Des Weiteren sinken die Vermeidungskosten, je mehr Weltwirtschaft erfasst wird ("GDP"), da Technologien bei zunehmender Marktdurchdringung tendenziell günstiger werden. In der Grafik bildet das Volumen der Quader jeweils die Vermeidungskosten, die Grundfläche der Quader die Menge an CO₂ für eine bestimmte Wirtschaftsleistung ab. Um das 2-Grad-Ziel zu erreichen, muss die gesamte Weltwirtschaft nahe der "CO₂/GDP"-Nulllinie stattfinden.

Gemäß Abbildung 4 hat der Erbringer einer Wirtschaftsleistung "A" im IL zwei Möglichkeiten, um seine Emissionen um 50% zu senken: a) interne Innovation oder b) Kompensation im EL. Bei Option a) verbessert er seinen Produktionsprozess mithilfe innovativer Technik, wofür er zwar hohe Kosten aufwenden muss, er jedoch der "CO2/GDP"-Nulllinie näher kommt, was im Sinne des Klimas langfristig den einzig gangbaren Weg darstellt. Wählt er stattdessen Option b), wird in den EL ein Produktionsprozess "C" mit Hilfe bestehender und daher kostengünstiger Technik effizienter gestaltet ("D") und so die Emissionen an anderer Stelle eingespart. Zwar stellt Option b) in der Regel die kostengünstigere dar. Durch fehlende Innovation im IL bleibt der Ausgangsprozess "A" jedoch unverändert bestehen, und auch der Produktionsprozess "C" im EL rückt maximal bis zu einer vergleichbaren CO2-Intensität vor (hier: gestrichelte Linie), erreicht hingegen niemals den Bereich der nachhaltigen Weltwirtschaft.

Somit wird deutlich, weshalb die marktüblichen Kompensationskosten nicht die Dekarbonisierungskosten abbilden, sondern stets darunter liegen: Die Kompensation greift in diesem Sinne die "tief hängenden Früchte" ab, indem sie zu vergleichsweise niedrigen Kosten vorhandene Technologien zur Emissionsreduzierung verbreitet. In diesem Bereich kann Kompensation funktionieren: die Effizienzmaßnahmen zahlen sich aus und führen zu einer Netto-Emissionsminderung, was eine Win-Win-Situation für alle Beteiligten darstellt. "Billige" Kompensation konkurriert allerdings mit der ökologischen Innovation in den IL, die jedoch die Basis für den zur Eindämmung des Klimawandels notwendigen Umbau des Energiesystems ist – oder mit anderen Worten: alleinige Kompensation knipst den Innovationsmotor in den IL aus. Da die EL künftig ebenfalls eigene Reduktionsziele erreichen müssen, stellt sich des Weiteren die Frage, inwiefern die EL die Nachfrage nach Emissionsrechten seitens der IL langfristig bedienen können. ²⁴ Die Kompensation gaukelt demnach eine Lösung vor, die auf lange Sicht nicht funktionieren kann.

3.6 Fazit

In diesem Kapitel haben wir gezeigt, dass unverhältnismäßig eingesetzte Kompensation nicht dem Klimaschutz dient. Dabei kommen zwei wesentliche Aspekte zum Tragen:

_

²³ HMUELV 2012

²⁴ LUHMANN, HANS-JOCHEN UND STERK, WOLFGANG 2008

- Kompensation ändert nichts an den CO₂-Quellen
 Selbst wenn die IL alle eigenen Emissionen in den EL kompensieren, bleibt die
 Menge an eigenen CO₂-Emissionen in den IL bestehen. Diese sind alleine schon
 ausreichend, um die globalen Klimaschutzziele zu verfehlen.
- 2. Kompensation kann den Innovationsdruck abschwächen Kompensation greift vornehmlich die tief hängenden Früchte ab, indem sie vorhandene kostengünstige Technologien zur Emissionsminderung nutzt und verbreitet. Das ist zwar sinnvoll, kann aber dann problematisch werden, wenn dadurch Märkte für neue, innovative und teure Technologien weniger schnell in Fahrt kommen. Diese sind aber für den Weg in eine 2-Grad-Zukunft unerlässlich.

Unter welchen Umständen kann Kompensation sinnvoll sein? Diese Frage beantwortet Teil II der Studie.

TEIL II: ANFORDERUNGEN AN EINE SINNVOLLE KOMPENSATION

4 Einleitung: Vermeiden – Reduzieren – Kompensieren, Leitfaden für sinnvolle Kompensation

In den vorigen Kapiteln haben wir gezeigt, dass unverhältnismäßig eingesetzte CO₂-Kompensation aus Klimaschutzsicht nicht zielführend ist und im schlimmsten Fall sogar die notwendige globale Transformation bremsen kann.

Zentral war in diesem Zusammenhang, dass die CO₂-Kompensation nicht den Vorrang vor dem Vermeiden und Reduzieren von CO₂ erhalten darf, bzw. nicht in Konkurrenz zu diesen besseren und zielführenderen Klimalösungen treten darf. Wie aber kann man herausfinden, ob dies bei einem Kompensationsangebot der Fall ist oder nicht?

Genau an dieser Stelle setzt der Leitfaden "sinnvolle Kompensation" an: In Teil II entwickeln wir Kriterien und einen Leitfaden, um bei jedem Produkt bzw. jeder Dienstleistung entscheiden zu können, ob die Kompensation aus Klimasicht sinnvoll ist oder nicht.

Damit kann bereits die Auswahl eines zu kompensierenden Produkts oder einer Dienstleistung verhindern, dass klimaschädliche Technologien und Produkte aufgewertet werden und der Klimaschutz bei der Kompensation in Schieflage gerät.

5 Drei verschiedene Produktklassen

5.1 Überblick

Mitte der 1990er Jahre stellte die Arbeitsgruppe "Neue Wohlstandsmodelle" am Wuppertal Institut für Klima, Umwelt und Energie drei Wege zur nachhaltigen Entwicklung heraus: Suffizienz, Effizienz, Konsistenz.

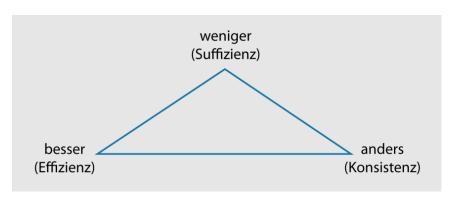


Abbildung 6: Dreigestirn der Nachhaltigkeit²⁵

²⁵ nach: von Winterfeld, Uta 2007

In Anlehnung an das "Dreigestirn der Nachhaltigkeit" stellt dieser Leitfaden drei Produktklassen vor, in denen drei verschiedene Klimaschutzansätze abgebildet sind (vgl. Abbildung 7).

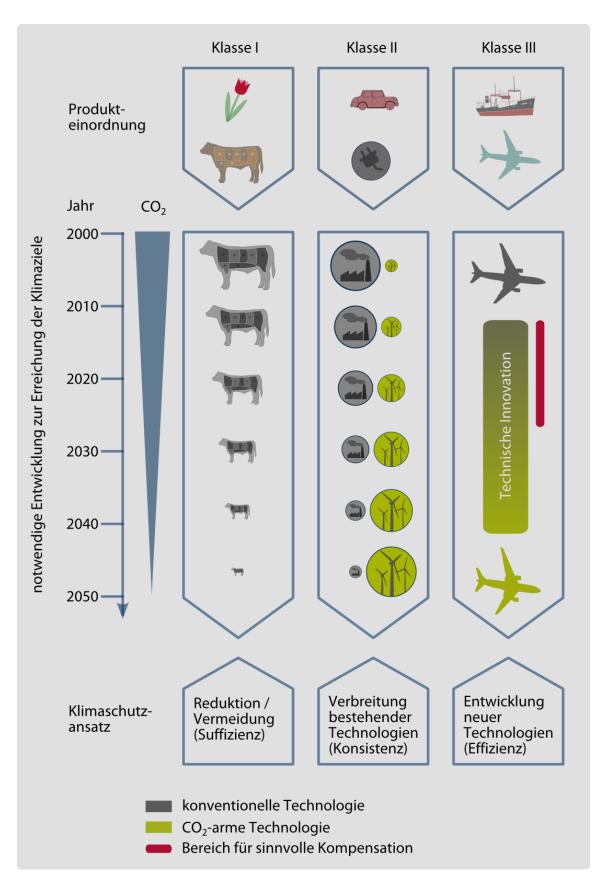


Abbildung 7: Produkteinteilung nach Klassen und notwendige Entwicklung zur Erreichung der Klimaziele

Ziel ist es, alle möglichen Produkte oder Dienstleistungen in einer dieser Produktklassen einzuordnen, wobei sich lediglich für Produkte der Klasse III eine Kompensation als sinnvoll erweisen wird.

Während in der ersten Säule Produkte eingeordnet werden, deren Konsum in bestehendem Umfang nicht mit den langfristigen Klimazielen vereinbar ist und daher auf lange Sicht zurückgefahren werden sollte, ist bei Produkten der zweiten Säule für den Klimaschutz die Verwendung bereits existierender klimafreundlicher Alternativen vorrangig. Die Kompensation entstandener Emissionen darf allein in der dritten Säule eine Rolle spielen. Hier werden Produkte eingeordnet, zu denen es derzeit keine realistischen klimafreundlicheren Alternativen gibt, bei denen aber eine Entwicklung hin zu klimaverträglichen Technologien möglich oder bereits zu beobachten ist.

Im Folgenden werden die Produktklassen erläutert. Eine Produkteinteilung bildet immer den derzeitigen technologischen Status Quo ab und ist somit nicht endgültig, sondern kann vielmehr auf Nachfrage immer wieder überprüft werden. Ein Produkt aus Klasse I kann demnach mit technologischen Fortschritt in die Klassen II und III wechseln.

5.2 Klasse I: Die Unverträglichen

Diese Produktklasse umfasst Produkte, zu denen es derzeit keine klimafreundliche Alternative gibt und bei denen kein technologischer Wandel in Richtung CO₂-arme Produktion oder Gebrauch in Reichweite ist, welcher einen unveränderten und trotzdem mit den Klimazielen verträglichen Konsum ermöglichen würde.

Als Beispiel dient hier Fleisch.

- Die Produktion von Fleisch ist mit 3,0 (Bio-Schwein) 14 (Rind) kg CO₂²⁶ pro kg im Vergleich zu Gemüse (bis ca. 0,5 kg CO₂ pro kg) treibhausgasintensiv.²⁷ Produkte aus Soja oder Ersatzprodukte stellen aufgrund von Unterschieden in Geschmack und Konsistenz nur für wenige Fleischesser eine annehmbare Alternative dar. An synthetisch hergestelltem Fleisch wird zwar geforscht, jedoch ist nicht absehbar, ob bzw. wann dieses zur Marktreife gelangen könnte und ob dies die heutigen Fleischesser überzeugen wird.²⁸ Auch lässt sich derzeit keine Entwicklung hin zu einer erheblich CO₂-ärmeren Produktionsmethode erkennen, was maßgeblich mit dem unvermeidlichen Methanausstoß in der Rinderhaltung zusammenhängt.
- Mit einem jährlichen Pro-Kopf-Fleischverzehr von gut 60 kg liegt Deutschland im europäischen Mittelmaß.²⁹ Im Jahr 2010 wurden weltweit 293 Mio. t Fleisch produziert, was einem Pro-Kopf-Verbrauch von etwa 42 kg entspricht.³⁰ Mit den obigen Emissionsfaktoren lässt sich die dadurch verursachte Menge an jährlichen THG-Emissionen auf 0,9 4,2 Gt CO₂eq. abschätzen. Vergleicht man dies mit den langfristigen Reduktionszielen (vgl. Abbildung 2), so wird ersichtlich, dass bei einem

²⁸ BR 2012, BZ 2012

22

²⁶ CO₂-Äquivalente, inkl. relevanter Prozessschritte wie Kühlung und Transport

²⁷ ÖKÖ 2007

²⁹ BVDF 2012

³⁰ FAO 2012

unvermindert hohen Fleischverzehr allein die Emissionen der Fleischproduktion im Jahr 2050 bereits etwa die Hälfte des globalen CO₂-Budgets ausschöpfen würden und im Jahr 2100 dieses sogar überschreiten würden. Daraus folg, dass nur eine langfristige Reduzierung des Fleischkonsums mit dem 2-Grad-Ziel vereinbar ist.

Das Ziel einer globalen CO₂-Reduktion ist in der Klasse I nur mit einer Reduktion bzw. Vermeidung des Konsums erreichbar. Eine Kompensation eines Produkts aus Klasse I würde demnach ein aus Klimasicht unverträgliches Produkt zu einer verlängerten Lebensdauer verhelfen und ist demnach nicht zielführend.

5.3 Klasse II: Die Auslaufmodelle

Um die Klimaziele zu erreichen, ist eine Umstellung auf CO₂-ärmere Technologien und Produkte notwendig. Für viele konventionelle Produkte existiert bereits heute eine klimafreundlichere Alternative, die ohne bzw. mit geringen Abstrichen bzgl. Funktion, Preis oder Zeitaufwand (vgl. Kapitel 6.6) genutzt werden kann. Durch geringere CO₂-Emissionen in Herstellung, Transport bzw. Verwendung entlastet die Wahl der Alternative einerseits direkt das Klima, andererseits wird so die Nachfrage nach der Technologie und damit deren Wettbewerbsfähigkeit gestärkt und ein Anreiz für weitere Innovationen gegeben. Die Nutzung klimafreundlicherer Alternativen trägt somit zur nachhaltigen Reduktion der Treibhausgasemissionen in den Industrieländern bei, was ein Grundpfeiler für die Erreichung der Klimaziele ist.

Als Beispiel für ein Produkt der Klasse II dient hier konventioneller Strom aus fossilen Energieträgern.

- Quasi CO₂-freier Ökostrom aus erneuerbaren Energien stellt eine preislich konkurrenzfähige Alternative zu CO₂-intensivem konventionellem Strom dar. Zugleich ist keine Innovation erkennbar, die die konventionelle Form der Stromgewinnung in absehbarer Zukunft klimafreundlicher gestalten könnte, da die zur Energiegewinnung notwendige Verbrennung der fossilen Energieträger per se mit der Freisetzung von CO₂ verbunden ist. Die Abscheidung und Speicherung von CO₂ (CCS) ist in diesem Zusammenhang kritisch zu sehen, da in diesem Fall die Erzeugung des CO₂ nicht vermieden wird, sondern die Emissionen abgefangen und in tiefere Erdschichten verbracht werden. Das CCS-Verfahren gilt als technologisch zu anspruchsvoll und kostenintensiv, viele Pilotprojekte wurden inzwischen abgebrochen.³¹

Im Unterschied zu Klasse I gibt es in der Klasse II schon heute klimafreundlichere Alternativen. Klimaschutz wird in Klasse II dadurch realisiert, dass die klimafreundlichen Alternativen immer konkurrenzfähiger werden, die Marktanteile wachsen und dabei die klimaschädlichen Vorläufer zurückdrängen. Die Kompensation eines Produkts aus Klasse II würde dagegen die klimaschädliche Variante aufwerten und den Wettbewerb zuungunsten der klimafreundlichen Produkte verzerren. Dies ist für die Erreichung der Klimaziele hinderlich.

³¹ DIW 2012

5.4 Klasse III: Die Wandelbaren

Für Produkte der Klasse III existieren derzeit noch keine klimafreundlicheren Alternativen, die für den Konsumenten bzgl. Funktion, Preis und Zeit realistisch wären (vgl. Kapitel 6.6). Im Unterschied zu Produkten der Klasse I zeichnet sich hier jedoch bereits ein technologischer Wandel hinzu CO₂-armer Herstellung und Gebrauch ab, der künftig eine Nutzung des Produkts im Einklang mit den Klimazielen ermöglichen kann. Nur bei dieser Art von Produkten spielt aus Klimaschutzsicht die Kompensation eine Rolle.

Ein Beispiel für Klasse III sind Mittel- und Langstreckenflüge.

- Bei Mittel- und Langstreckenflügen sind die Alternativen Auto, Bahn oder Schiff entweder nicht verfügbar oder unrealistisch. Je länger die Reisestrecke, desto weniger attraktiv wird diese Alternative in der Regel für den Konsumenten, da die Unterschiede bei Zeitaufwand oder Preis erheblich zunehmen.
- In der Luftfahrt gibt es zwar eine stetige Entwicklung der Treibstoffeffizienz, aber gerade auf den Langstreckenflügen ist eine Technologie noch nicht absehbar, die ganz ohne fossile Brennstoffe auskommt. Allerdings ist es schon heute möglich und in kleineren Anlagen praktiziert, mit der Power-to-Liquid-Technologie klimafreundliche synthetische Kraftstoffe für die heutigen Flugzeugtreibwerke herzustellen, die Kerosin beigemischt werden können oder dieses ersetzen und dabei vollständig auf erneuerbaren Energien beruhen.

In Klasse III besteht die Klimaschutzaufgabe darin, diese neuen Technologien zur Marktreife zu bringen und die Kosten soweit zu senken, dass sie wie in Klasse II konkurrenzfähig werden. Die Kompensation kann hier flankierend eingesetzt werden, um den Zeitraum bis zur Marktreife bzw. Konkurrenzfähigkeit zu überbrücken. Der Konsument muss dann nicht auf das Produkt verzichten, weil es prinzipiell klimafreundlich hergestellt werden kann und die Hersteller bereits auf dem Weg dahin sind.

5.5 Fazit

Praktisch alle Konsumprodukte lassen sich einer der drei dargestellten Produktklassen einordnen. Die Einteilung zeigt auf, für welche Produkte eine Kompensation aus Klimasicht sinnvoll erscheint und gibt dem Konsumenten bzw. Produzenten eine Auswahl an Handlungsoptionen im Sinne eines ganzheitlichen Klimaschutzansatzes an die Hand:

- Suffizienz (Klasse I): Bei Produkten, für die derzeit keine realistische klimafreundlichere Alternative existiert und auch kein technologischer Wandel erkennbar ist, ist allein eine Konsumverringerung langfristig mit den Klimazielen vereinbar.
- Konsistenz (Klasse II): Durch den Umstieg auf eine klimafreundlichere Alternative wird die Nachfrage nach der Alternative gestärkt und die Innovation weiter angetrieben.
- Effizienz (Klasse III): Produkte, für die heute noch keine realistischen Alternativen vorhanden sind, bei denen sich jedoch eine aus Klimasicht innovative Entwicklung abzeichnet. Die Kompensation überbrückt hier den Zeitraum bis zur Verfügbarkeit der klimafreundlichen Alternative. So können Kunden weiter das konventionelle

Produkt kaufen, aber die Hersteller mit den Einnahmen die klimafreundliche Alternative entwickeln.

Die Beschränkung auf die Kompensation von Produkten aus Klasse III stellt sicher, dass keine im Sinne des Klimas schädlichen Technologien und Produkte aufgewertet werden oder den Wettbewerb zuungunsten der klimafreundlicheren Alternative verfälschen.

6 Anforderungen an die Produkte und Dienstleistungen

6.1 Überblick

Leitfrage dieser Studie ist, inwiefern eine angestrebte Kompensation eines Produkts in aus Klimaschutzsicht nachhaltig und sinnvoll ist. Die Einordnung von Konsumgütern in die drei Produktklassen (vgl. Kapitel 5) soll sicherstellen, dass Produkte nur dann kompensiert werden, wenn damit eine Lenkungswirkung hin zu klimafreundlicheren Technologien verbunden ist und durch die Kompensation Innovationen nicht behindert oder veraltete Technologien aufgewertet werden.

In diesem Kapitel stellen wir Kriterien und Prüfschritte vor, anhand derer verschiedenste Produkte in o.g. Klassen eingeteilt werden. Diese Kriterien prüfen im Wesentlichen, ob

- 1. eine realistische klimafreundlichere Alternative zum Produkt existiert
- 2. ein künftiger Wandel hin zu klimafreundlicheren Technologien erkennbar ist.

Abbildung 8 illustriert die Abfolge der Prüfkriterien, die ein ausgewähltes Produkt für die Einordnung in eine Produktklasse durchläuft. Diese werden in den folgenden Abschnitten näher erläutert.

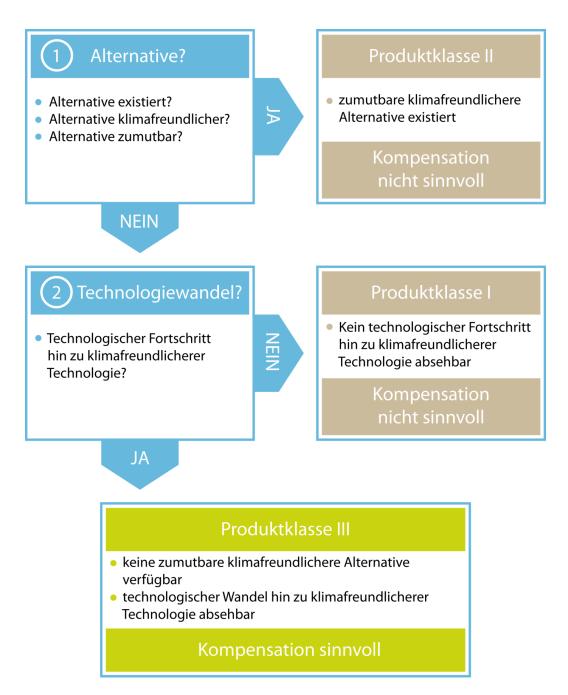


Abbildung 8: Abfolge der Prüfkriterien und Einordnung in die drei Produktklassen

Existiert eine realistische klimafreundlichere Alternative zum betrachteten Produkt, so ist es aus Klimasicht sinnvoller, die Nutzung der Alternative einer Kompensation vorzuziehen – das Produkt kann demnach in Produktklasse II eingeteilt werden. Ist keine klimafreundlichere Alternative verfügbar, muss weiter eingeschätzt werden, ob bei dem betrachteten Produkt eine Entwicklung hin zu klimaverträglicher Technologie erkennbar ist (Kapitel 6.7). Ist keine technologische Innovation absehbar, ist im Sinne des Klimas die Konsumreduzierung bzw. –verzicht die nachhaltigste Option. Kann die Frage nach dem technologischen Wandel hingegen mit "ja" beantwortet werden, so ist das betrachtete Produkt die Produktklasse III einzuordnen, wo die Kompensation eine sinnvolle begleitende Rolle spielen kann.

6.2 Ausschluss ethisch nicht vertretbarer Produkte

Einige Produktsegmente schließt atmosfair aus moralischen Gründen von vorneherein aus der Betrachtung aus. Dazu gehören Produkte, die dem Zweck dienen, anderen Menschen psychisch oder physisch zu schaden (z.B. Waffen oder Drogen).

6.3 Schritt 1: Existiert eine Alternative?

Dieser erste Prüfschritt untersucht, ob eine realistische Alternative zum betrachteten Produkt existiert, die klimafreundlicher ist und daher anstelle des Produkts erworben bzw. benutzt werden kann. Eine solche Alternative ist dann verfügbar, wenn sie

- existiert (Kapitel 5.3),
- klimafreundlicher als das betrachtete Produkt ist (Kapitel 6.4) sowie
- realistisch ist (Kapitel 6.6).

Klimafreundlichere Alternativen lassen sich grundsätzlich unterteilen in

- interne Alternativen,
 die ein Produkt innerhalb desselben Segments darstellen (Bsp. Kauf eines Autos: Kauf eines Elektroautos mit Grünstrom),
- externe Alternativen,
 die eine segmentübergreifende Option darstellen (Bsp. Auto: Kauf eines Fahrrads,
 Nutzung des ÖPNV, Bahn, Carsharing etc.).

Da interne Alternativen dem betrachteten Produkt in Funktion und Eigenschaften im Allgemeinen am nächsten kommen, lässt sich vorab folgende Aussage treffen: Die Kompensation eines Produkts ist nicht sinnvoll, solange eine interne Alternative verfügbar ist, die klimafreundlicher und für den Konsumenten realistisch ist.

Demnach ist es beispielsweise für den Klimaschutz kontraproduktiv, die Kompensation von konventionellem Strom anzubieten, da der Wechsel zu Ökostrom eine klimafreundlichere und für den Konsumenten i.A. realistische Alternative darstellt.

Ist keine interne Alternative verfügbar oder stellt das betrachtete Produkt bereits die klimafreundlichste Option innerhalb seines Segments dar, kann untersucht werden, inwiefern eine externe Alternative existiert.

6.4 Alternative ist klimafreundlicher?

Wurde eine Alternative zum betrachteten Produkt gefunden, soll in diesem Prüfschritt ermittelt werden, ob die Alternative klimafreundlicher ist als das ursprüngliche Produkt.

Grundlage des Produktvergleichs hinsichtlich ihrer Klimawirkung soll eine Abschätzung der THG, die im Rahmen des Lebenszyklus von Produkt und Alternative emittiert werden, darstellen. Im Sinne einer ganzheitlichen Nachhaltigkeitsbetrachtung sollen weitere soziale und ökologische Faktoren in die abschließende Entscheidung mit einbezogen werden (Kapitel 0). Sollte die Alternative in wenigstens einer dieser Abfragen als "nicht klimafreundlicher" eingestuft werden, so wird die einleitende Prüffrage mit "nein" beantwortet und es kann zum Fazit (Kapitel 6.6.4) übergegangen werden.

Für eine Abschätzung der im Zusammenhang mit einem Produkt verursachten THG-Emissionen wird der gesamte Lebenszyklus des Produkts betrachtet ("cradle-to-grave" – Ansatz). Dieser lässt sich i.d.R. in folgende fünf Hauptschritte untergliedern:

- 1. Rohstoffförderung / -akquisition, Materialvorbearbeitung
- 2. Produktion
- 3. Lagerung und Transport
- 4. Nutzung
- 5. Entsorgung bzw. Recycling

Für jeden dieser Lebenszyklusschritte soll der THG-Ausstoß bezogen auf eine geeignete Produkteinheit (z.B. je kg Material je Auto etc.) abgeschätzt werden. Bei Produkten, die nach dem Erwerb weitere Emissionen durch ihren Gebrauch verursachen (z.B. Kraftfahrzeuge), soll eine realistische Nutzungsdauer und –intensität antizipiert werden. Die Abschätzung sollte dabei unter Nutzung von vorhandenen Standards erfolgen wie z.B. dem GHG Standard.

Auf dieser Grundlage können Produkt und Alternative verglichen werden. Eine Alternative wird dann als klimafreundlicher eingestuft, wenn die entsprechenden THG-Emissionen signifikant niedriger sind als die des betrachteten Produkts.

6.5 Weitere Umwelt- und Sozialfaktoren

Obgleich der Fokus dieser Studie auf der Klimawirksamkeit von Produkten liegt, soll an dieser Stelle der Vergleich der Klimafreundlichkeit von Produkten nicht ausschließlich auf Basis der THG-Emissionen erfolgen, sondern im Sinne einer ganzheitlichen Nachhaltigkeitsbetrachtung ökologische und soziale Faktoren mit einbeziehen. Folgende Beispiele sollen die Problematik verdeutlichen:

- Konventionellem Benzin aus fossilen Rohstoffen steht die CO₂-arme Alternative Bioethanol gegenüber, welches aus indonesischem Palmöl hergestellt wurde. Für die Palmenplantagen wurden ggf. Urwälder abholzt, wobei die daraus resultierenden ökologische Konsequenzen bisher nicht absehbar sind. Auch entsprechen die Arbeitsbedingungen auf der Palmölplantage ggf. nicht den Standards, die für deutsche Raffinerien gelten.
- Atomstrom weist im Gegensatz zur Stromerzeugung aus anderen fossilen Energieträgern einen sehr geringen CO₂-Emissionsfaktor von etwa aus, was aus Sicht des Klimas zunächst einen Vorteil darstellt. Die langfristigen "Nebeneffekte" der Elektrizitätsgewinnung aus Kernspaltung stellen jedoch einen schwerwiegenden Eingriff in die Umwelt mit nicht absehbaren Verschmutzungsfolgen und schwer kalkulierbarem Gefahrenpotenzial dar.
- Obst und Gemüse aus ökologischem Landbau verursacht abhängig u.a. von Sorte und Erzeugerland –nicht unbedingt signifikant weniger CO₂ als konventionelle Agrarerzeugnisse.³² Aufgrund der im Allgemeinen schonenderen Anbaumethoden wie dem Verzicht auf chemisch-synthetische Pflanzenschutzmittel und leicht lösliche mineralische Düngemittel kann der ökologische Landbau in der gesamtökologischen

-

³² ÖKO 2007

Betrachtung als vorteilhaft gegenüber der konventionellen Landwirtschaft eingestuft werden.

Während der Vergleich der THG-Emissionen nach objektiven Kriterien erfolgt, obliegt dieser zweite Schritt dem Ermessen des Betrachters. Die Abwägung zwischen klimatologischen, weiteren ökologischen und sozialen Auswirkungen und die letztendliche Beantwortung der Frage, ob die gefundene Alternative klimafreundlicher als das betrachtete Produkt ist, soll demnach argumentativ transparent dargelegt und dokumentiert werden.

6.6 Alternative ist realistisch?

Klimafreundlichere Alternativen unterscheiden sich in der Regel in mehrerlei Hinsicht vom betrachteten Produkt. Diese Unterschiede sind zwar objektiv messbar, jedoch liegt die Bewertung dieser Unterschiede in Bezug auf die Attraktivität der Alternative oft im Ermessen des Konsumenten.

Aufgrund der Vielzahl der Produkte und der Subjektivität des individuellen Empfindens ist die Frage, wie realistisch die Alternative ist, nur schwer zu beantworten. atmosfair identifiziert drei Hauptfragen, anhand derer die Frage beantwortet werden soll.

Damit schließt atmosfair nicht aus, dass es weitere Kategorien gibt, jedoch decken die vorgeschlagenen Kategorien den Großteil der Argumentation ab. Innerhalb dieser Hauptkategorien werden, soweit möglich, quantitative Kriterien auf wissenschaftlicher Grundlage abgeleitet. Gemäß dieser Einteilung kann eine Alternative im Vergleich zum Wunschprodukt

- realistisch in Funktion und Eigenschaften
- realistisch im Preis
- realistisch im Zeitaufwand

sein. Sollte ein betrachtetes Produkt in wenigstens einer der Kategorien als "nicht realistisch" eingestuft werden, so wird die einleitende Prüffrage mit "nein" beantwortet.

6.6.1 Alternative in Funktion und Eigenschaften?

Eine klimafreundlichere Alternative kann in seiner Funktion und sonstigen charakteristischen Eigenschaften stark vom betrachteten Produkt abweichen und ggf. für den Konsumenten nicht realistisch sein. Dies soll folgendes Beispiel verdeutlichen:

Ein handgeknüpfter Orient-Teppich und die aufgrund des Transportaufwands klimafreundlichere Alternative eines maschinengewebten Teppichs aus Europa, die sich in Aussehen, Haltbarkeit und Funktion ähneln, mögen für Konsument "A" äquivalent sein. Für Konsument "B" ist der Orient-Teppich, den er auf einer Reise erstanden hat, aufgrund des ideellen Werts jedoch keinesfalls mit dem europäischen Industrieteppich vergleichbar.

Die Frage der Realitätsnähe einer Alternative hinsichtlich ihrer Funktion und Eigenschaften liegt im Ermessen des Betrachters und kann nicht anhand von quantitativen Kriterien beantwortet werden. atmosfair fordert daher, die subjektive Entscheidung wiederum argumentativ transparent und nachvollziehbar darzulegen.

6.6.2 Alternative realistisch im Preis?

Klimafreundliche Alternativen weisen häufig einen höheren Preis auf als das konventionelle Produkt. Die folgende Tabelle gibt einen exemplarischen Überblick über Preisunterschiede in verschiedenen Produktkategorien:

Konventionelles Produkt	Preis	Preisdifferenz
Klimafreundlichere (interne oder externe) Alternative		
Tomaten, konventioneller Anbau, Spanien	3 € / kg	67%
Tomaten, ökologischer Landbau, regional	5€/kg	
Konventioneller Strom, Vattenfall, Berlin Klassik Privatstrom	430,00 € /	9%
	1.500 kWh	
Ökostrom, Lichtblick	470 € /	
	1.500 kWh	
Renault Fluence, 110 PS, 157 g CO ₂ /km	ab 21.490,- €	10%
Renault Fluence Z.E., 95 PS, 14 kWh/100 km ≈ 80 g CO ₂ /km	ab 23.800,- €	10%
Renault Fluence Z.E., elektrisch, mit Grünstrom 0 CO ₂ /km	ab 26.000,- €	
Kaffee, konventioneller Anbau	4,99 € / 500g	50%
Kaffee, ökologischer Landbau, Fairtrade	7,59 € / 500g	
Flug Berlin – Frankfurt	89,- €	33%
Bahnfahrt (ICE) Berlin – Frankfurt (ohne Ermäßigung)	118,- €	

Tabelle 2: Preisunterschiede zwischen konventionellen Produkten und einer klimafreundlicheren Alternative anhand einiger Beispiele.

Der exemplarische Vergleich von konventionellen mit innovativen, ökologisch vorteilhafteren Produkten mit ähnlicher Funktion zeigt, dass die Preisunterschiede bis zu mehr als das Doppelte des ursprünglichen Preises ausmachen. Des Weiteren kann es vorkommen, dass die klimafreundlichere Alternative zwar einen höheren Anschaffungspreis aufweist, im Gebrauch aber günstiger abschneidet als das konventionelle Produkt – so etwa beim VW Polo Blue Motion, der gegenüber dem Standardmodell VW Polo Trendline bei gleicher Leistung durchschnittlich 13% weniger Sprit verbraucht.

Die preisliche Zumutbarkeit liegt wiederum im Ermessen des Betrachters. In Anlehnung an den 50%-Richtwert bei der Beurteilung der Klimafreundlichkeit betrachtet atmosfair eine klimafreundlichere Alternative als preislich noch realistisch, wenn der Gesamtpreis um maximal 50% höher liegt als der des Ausgangsprodukts. Bei der Ermittlung des Gesamtpreises können eine eventuelle Kostenersparnis bzw. –mehraufwand berücksichtigt werden, die sich während des antizipierten Gebrauchs ergeben.

6.6.3 Alternative realistisch im Zeitaufwand?

Eine klimafreundliche Alternative kann unter Umständen einen erheblichen zeitlichen Mehraufwand nach sich ziehen, wie am Beispiel von Interkontinentalflügen deutlich wird. Prinzipiell gäbe es zu dieser Art von Flugreisen die klimafreundlichere Alternative einer Schiffsreise. Der Mehraufwand bzgl. der Reisezeit ist allerdings erheblich und die Schiffsreise damit in der Regel für den Reisenden nicht realistisch.

Die Frage der Zumutbarkeit einer Alternative bezüglich des Zeitaufwandes liegt wiederum im Ermessen des Betrachters, weshalb an dieser Stelle auf die Definition eines quantitativen Kriteriums verzichtet wird.

6.6.4 Fazit

Die Eingangsfrage nach einer realistischen klimafreundlicheren Alternative kann dann mit "ja" beantwortet werden, wenn alle Unterkriterien mit "ja" beantwortet werden können. Das ausgewählte Produkt kann dann in die Produktklasse II eingeordnet werden.

Falls eines der Unterkriterien mit "nein" beantwortet wird, so muss auch die Frage nach einer realistischen klimafreundlicheren Alternative mit "nein" beantwortet werden. In diesem Falle wird Prüfschritt 2 herangezogen, um zu klären, ob eine Kompensation für dieses Produkt sinnvoll ist.

6.7 Schritt 2: Ist ein technologisches Entwicklungspotenzial vorhanden?

Der vorangegangene Prüfschritt hat ergeben, dass für das betrachtete Produkt keine realistische Alternative zur Verfügung steht. In diesem Prüfschritt soll geklärt werden, ob das Produkt trotzdem eine technologische Entwicklung erkennen lässt, die in Zukunft die mit dem Produkt verbundenen CO₂-Emissionen in hinreichendem Maße senken kann (also z.B. um 90% bis 2050 gegenüber 1990 in Einklang mit ICC Szenarien).

Die Frage nach einem nachhaltigen technologischen Entwicklungspotenzial kann in der Regel durch einen Marktüberblick beantwortet werden, wobei ein gewisser Ermessensspielraum bei der Beurteilung besteht. Es wird an dieser Stelle darauf verzichtet, diesen durch quantitative Kriterien zu begrenzen.

Ist für das betrachtete Produkt keine Entwicklung hin zu emissionsarmen und klimaverträglichen Technologien erkennbar, stellt eine langfristige Konsumreduzierung die einzige nachhaltige Strategie dar und das Produkt wird in Klasse I eingeordnet. Zeichnet sich hingegen ein technologischer Wandel ab, so kann eine Kompensation der entstehenden Emissionen als sinnvoll erachtet werden und das Produkt erreicht die Produktklasse III.

6.8 Preis der Kompensation

Klimaschutz hat in den letzten Jahren bei der Kaufentscheidung in allen Lebens- und Konsumbereichen stark an Bedeutung gewonnen. Nichtsdestotrotz sind nur wenige Konsumenten bereit, für klimafreundliche Produkte einen deutlich höheren Preis zu bezahlen, sofern damit keine rückwirkenden Kosteneinspareffekte verbunden sind. Übertragen auf kompensierte Produkte heißt dies, dass eine auf einem Produkt ausgewiesene Kompensation einen Marktvorteil darstellt und das Produkt für den Verbraucher insbesondere dann attraktiver macht, wenn die Kompensationskosten im Vergleich zu den Produktkosten gering sind.

Ein verhältnismäßig geringer Kompensationsaufpreis birgt daher die Gefahr, als Marketingstrategie missbraucht zu werden, um verstärkte Nachfrage zu generieren, wobei der eigentliche Klimanutzen in den Hintergrund rückt.

Aus Klimaschutzsicht darf Kompensation kein "Ramschartikel" sein. Im schlimmsten Fall kann die Kompensation deutlich billiger sein als der Aufpreis für das klimafreundliche Alternativprodukt. In diesem Fall ist zu befürchten, dass der Wettbewerb allein durch den Preis zuungunsten des zielführenden Produktes verzerrt wird.

_

³³ INITIATIVE2GRAD 2009

6.9 Kompensation von Produktklassen / Hersteller

Es gibt Hersteller, die ein gemischtes Produktsortiment kompensieren wollen, in dem sowohl Produkte enthalten sind, die den obigen Kriterien für eine Kompensation genügen, als auch solche, die diesen Kriterien nicht genügen.

Grundlage für die Beurteilung solcher Fälle bleibt stets das Prinzip Vermeiden vor Reduzieren vor Kompensieren (siehe Kapitel 4). Um diesen Prinzip zu folgen, sollte die angebotene Produktpalette auch ohne Kompensation schon auf dem Weg in eine 2-Grad-Klimazukunft sein. Denn sonst bestünde wie bei Einzelprodukten die Gefahr, dass durch die Kompensation nur die aus Klimasicht schlechteren Produkte länger im Portfolio bleiben. Beispiele können Lebensmitteldiscounter sein, genauso wie Hersteller von Haushaltsgeräten, Autos oder Bekleidung.

Aus Klimasicht ist deswegen die Voraussetzung, dass ein Hersteller eine Selbstverpflichtung eingeht, in der er einen Zielpfad vorgibt, wie sich die CO₂-Emissionen seiner Produkte entwickeln sollen. Dieser Zielpfad sollte kompatibel mit dem 2-Grad-Ziel sein (z.B. anhand der Methode der Science Based Target Initiative). Solange der Hersteller nachweislich diese Verpflichtung einhält, kommt die CO₂-Kompensation der Produkte nur ergänzend und aus Klimasicht sinnvoll hinzu.

TEIL III Produktklassen in der Praxis

7 Überblick

Im Folgenden sollen die in Kapitel 6, Teil II aufgestellten Kriterien zu Einordnung in Produktklassen anhand typischer Produktbeispiele aus verschiedenen Kategorien erläutert werden.

Produktkategorie	Kapitel	Produktbeispiel ³⁴
Energie	7.1	 Konventioneller Strom
		- Ölheizung
Lebensmittel	7.2	- Fleisch
		- Tomaten aus Spanien
Mobilität	7.3	- Auto
		 Interkontinentalflug
		 Kurzstreckenflug
Dienstleistungen	7.4	 Paketversand
		- Umzug per LKW
Freizeit / Lifestyle	7.5	- Kreuzfahrt
		- Gletscherhotel
		- Klimaneutral leben
Büromaterial, Beschaffung und	7.6	 Telefon- und Internetanschluss
elektronische Geräte		- Laptop
		 Klimaneutral Drucken
Andere Güter		- T-Shirt Baumwolle
	7.7	- Torf
		- Transfair Rosen aus Kenia

-

³⁴ Alle Fotos: FreeDigitalFotos.net

7.1 Energie

Treibhausgasintensive Prozesse	Konventioneller Strom - Förderung und Abbau von fossilen Rohstoffen		
Treiblidusgusiliterisive i 102cssc	- Verbrennung zur Energiegewinnung		
Kriterium 1: Alternative verfügbar?			
	Interne Alternative	Externe Alternative	
Alternative existiert?	Ja Ökostrom	Nein	
Alternative ist klimafreundlicher?	Ja Emissionsfaktoren nahe Null, da die Emissionen, die beim Bau und Instandhaltung der Infrastruktur entstehen, nur wenig ins Gewicht fallen. Quelle: WAGNER, HERMANN-JOSEF ET AL. 2007		
Alternative ist realistisch?			
- Funktion und Eigenschaften	Ja		
- Preis	Ja		
- Zeitaufwand			
Zwischenfazit	Ja Interne klimafreundlichere und realistische Alternative ver	fügbar	
Fazit	Kompensation nicht sinnvoll (Produktklasse II)		

	Ölheizung	
Treibhausgasintensive Prozesse	- Verbrennung von Heizöl zu Energiegewinnung	
Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Alternative Brennstoffe: Erdgas, Holzpellets	Ja Maßnahmen zur Minderung des Heizverbrauchs wie Optimierung des Nutzerverhaltens, Dämmung
Alternative ist klimafreundlicher?	Ja	Ja
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja	Ja
- Preis	Ja	Ja
- Zeitaufwand		Ja
Zwischenfazit	Ja Interne und externe klimafreundlichere und realistische Alternative verfügbar	
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

7.2 Lebensmittel

7.2 Lebensiiillei			
	Tierisches Fleisch		
Treibhausgasintensive Prozesse	- Haltung (Flächenverbrauch, Energie, Futter, Methanausstoß) - Transport und Kühlung		
Kriterium 1: Alternative verfügbar?			
	Interne Alternative	Externe Alternative	
Alternative existiert?	Ja Fleisch aus ökologischer Erzeugung	Ja Fleischersatzprodukte auf Soja- und Weizeneiweißbasis	
Alternative ist klimafreundlicher?	Nein CO ₂ -Ersparnis zw. 5 und 15%; Quelle: ÖKO 2007	Ja Quelle: VEBU 2011	
Alternative ist realistisch?			
- Funktion und Eigenschaften		Nein (für die Mehrheit der Konsumenten)	
- Preis			
- Zeitaufwand			
Zwischenfazit	Nein Keine interne oder externe klimafreundlichere und realistische Alternative verfügbar		
Kriterium 2: Technologisches Entwicklungspotenzial vorhanden?			
Zwischenfazit	Nein Derzeit ist keine Entwicklung hin zu einer CO ₂ -freien Produktionsmethode erkennbar		
Fazit	Kompensation nicht sinnvoll (Produktklasse I)		

Tomaten aus Spanien (Sommer / Winter) **Treibhausgasintensive Prozesse** Anbau (Flächenverbrauch, Energie, Bewässerung) Transport Kriterium 1: Alternative verfügbar? Interne Alternative **Externe Alternative** Alternative existiert? Ja Tomaten aus ökologischem Landbau (Sommer) Heimisches, jahreszeitlich verfügbares Gemüse im Winter (z.B. Kohl) Alternative ist klimafreundlicher? Ja Ja CO₂-Ersparnis ca. 30%; Quelle ÖKO 2007 Verkürzte Transportwege Ökolandbau i.A. schonender und nachhaltiger Alternative ist realistisch? Ja / Nein (siehe Kommentar unten) **Funktion und Eigenschaften** Ja Ja (abhängig von Sorte und Anbieter) Preis Ja Zeitaufwand Zwischenfazit Ja / Nein Interne und externe klimafreundlichere und realistische Alternative verfügbar Kompensation nicht sinnvoll **Fazit**

Kommentar: Das Beispiel der Tomate zeigt verschiedene Aspekte auf. Während im Sommer die Ökotomate aus biologischem Landbau CO₂ bei der Produktion spart, liegt das eigentliche Problem bei der Wintertomate aus Spanien. Nur wenige Verbraucher würden wahrscheinlich sagen, dass Rotkohl oder anderes Gemüse eine akzeptable Alternative zur Tomate ist. Aber wenn es eine klimafreundlichere Alternative zur Wintertomate aus Spanien nicht gibt, dann fehlt dennoch die technische Perspektive, um diese langfristig CO₂-frei zu erhalten. Die Produktion der Tomate mit erneuerbaren Energien in Spanien ist machbar, aber beim Import geht es dann nicht mehr um die Tomate selbst, sondern um die Logistik, die hier in einem eigenen Fall behandelt wird.

(Produktklasse II)

7.3 Mobilität

7.3 WODINAL		
	Auto	
Treibhausgasintensive Prozesse	KraftstoffverbrauchProduktion, Transport, Entsorgung	
Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Emissionsarme Fahrzeuge, z.B. Hybridfahrzeuge oder Elektroautos mit Grünstrom	Ja Fahrrad, ÖPNV, Carsharing
Alternative ist klimafreundlicher?	Ja	Ja
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja	Ja
- Preis	Ja (abhängig vom Produkt)	Ja
- Zeitaufwand		
Zwischenfazit	Ja Interne und externe klimafreundlichere und realistische A	Iternative verfügbar
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

	Kurzstreckenflug		
Treibhausgasintensiver Prozesse	- Kerosinverbrauch		
	Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative	
Alternative existiert?	Nein	Ja Fahrt mit alternativen Verkehrsmitteln (Zug, Auto)	
Alternative ist klimafreundlicher?		Ja	
Alternative ist realistisch?			
- Funktion und Eigenschaften		Ja	
- Preis		Ja	
- Zeitaufwand		Ja (abhängig vom Zielort)	
Zwischenfazit	Ja Externe klimafreundlichere und realistische Alternative verfügbar		
Fazit	Kompensation nicht sinnvoll (Produktklasse II)		

	Interkontinentalflug		
Treibhausgasintensive Prozesse	- Kerosinverbrauch		
	Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative	
Alternative existiert?	Nein	Ja Reise per Schiff	
Alternative ist klimafreundlicher?		Ja	
Alternative ist realistisch?			
- Funktion und Eigenschaften		Ja	
- Preis		Ja	
- Zeitaufwand		Nein	
Zwischenfazit	Nein Keine interne oder externe klimafreundlichere und realistische Alternative verfügbar		
Kriterium 2: Technologisches Entwicklungspotenzial vorhanden?			
Zwischenfazit	Ja Alternative Kraftstoffe (Power to Liquid, EE-Kerosin aus erneuerbaren Energien (kein Biosprit))		
Fazit	Kompensation sinnvoll (Produktklasse III)		

7.4 Logistik

1.4 Logistik			
	Paketversand		
Treibhausgasintensive Prozesse	- Kraftstoffverbrauch beim Transport		
	Kriterium 1: Alternative verfügbar?		
	Interne Alternative Externe Alternative		
Alternative existiert?	Nein	Nein	
Alternative ist klimafreundlicher?			
Alternative ist realistisch?			
- Funktion und Eigenschaften			
- Preis			
- Zeitaufwand			
Zwischenfazit	Nein Keine interne oder externe klimafreundlichere und realistische Alternative verfügbar		
Kriterium 2: Technologisches Entwicklungspotenzial vorhanden?			
Zwischenfazit	Ja Alternative Kraftstoffe (Power to Liquid) oder Antriebe (Elektromotor)		
Fazit	Kompensation sinnvoll (Produktklasse III)		

	Umzug per LKW		
Treibhausgasintensive Prozesse	- Kraftstoffverbrauch beim Transport		
	Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative	
Alternative existiert?	Nein	Nein	
Alternative ist klimafreundlicher?			
Alternative ist realistisch?			
- Funktion und Eigenschaften			
- Preis			
- Zeitaufwand			
Zwischenfazit	Nein Keine interne oder externe klimafreundlichere und realistische Alternative verfügbar		
Kriterium 2: Technologisches Entwicklungspotenzial vorhanden?			
Zwischenfazit	Ja Alternative Kraftstoffe (Power to Liquid) oder Antriebe (Elektromotor)		
Fazit	Kompensation sinnvoll (Produktklasse III)		

7.5 Freizeit / Lifestyle

7.5 Treizeit / Ellestyle		
	Kreuzfahrt	
Treibhausgasintensive Prozesse	- Kraftstoffverbrauch	
	Kriterium 1: Alternative verfügbar?	
	Interne Alternative	Externe Alternative
Alternative existiert?	Nein	Ja andersartiger Urlaub
Alternative ist klimafreundlicher?		Ja
Alternative ist realistisch?		
- Funktion und Eigenschaften		Nein (für die Mehrheit der Konsumenten)
- Preis		
- Zeitaufwand		
Zwischenfazit	Nein Keine interne oder externe klimafreundlichere und realistische Alternative verfügbar	
Kriterium 2: Technologisches Entwicklungspotenzial vorhanden?		
Zwischenfazit	Ja Alternative Kraftstoffe (z.B: LNG mit Power to Gas und Erneuerbaren Energien)	
Fazit	Kompensation sinnvoll (Produktklasse III)	

	Gletscherhotel	
Treibhausgasintensive Prozesse	- Energieverbrauch - Infrastruktur - Transport von Lebensmitteln und Gebrauchsgegenständen zum Hotel	
	Kriterium 1: Alternative verfügbar?	
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja anderes Hotel in der Nähe	
Alternative ist klimafreundlicher?	Ja	
Alternative ist realistisch?	Ja	
- Funktion und Eigenschaften	Ja	Nein (für die Mehrheit der Konsumenten)
- Preis	Ja	
- Zeitaufwand	Ja	
Zwischenfazit	Nein interne klimafreundlichere und realistische Alternative verfügbar	
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

7.6 Büro, Verwaltung und Beschaffung

	7.0 Build, Verwaltung und Beschanding		
	Telefon- und Internetbereitstellung		
Treibhausgasintensive Prozesse	ProduktionStromverbrauch der Hardware		
	Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative	
Alternative existiert?	Ja Hardware mit Stromsparmodus, Betrieb mit Ökostrom	Nein	
Alternative ist klimafreundlicher?	Ja Ca. 15% Energieeinsparung der Hardware; Quelle: GREENDSL 2012 Ökostrom vgl. Kapitel 7.1		
Alternative ist realistisch?			
- Funktion und Eigenschaften	Ja		
- Preis	Ja		
- Zeitaufwand			
Zwischenfazit	Ja Interne klimafreundlichere und realistische Alternative verfügbar		
Fazit	Kompensation nicht sinnvoll (Produktklasse II)		

	Laptop	
Typische treibhausgasintensive Prozesse	ProduktionTransportStromverbrauch im Betrieb	
Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Energie sparende Modelle; Betrieb mit Ökostrom	Nein
Alternative ist klimafreundlicher?	Ja Ökostrom vgl. Kapitel 7.1	
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja	
- Preis	Ja	
- Zeitaufwand		
Zwischenfazit	Ja Interne klimafreundlichere und realistische Alternative ve	erfügbar
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

	Klimaneutral Drucken	
Treibhausgasintensive Prozesse	- Papierherstellung - Energieverbrauch beim Druck	
	Kriterium 1: Alternative verfügbar?	
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Druck auf 100% Recyclingpapier, Druckereibetrieb mit erneuerbaren Energien	Nein
Alternative ist klimafreundlicher?	Ja Ökostrom vgl. Kapitel 7.1 Recyclingpapier, 60er Weisse*, altersbeständige Lebensdauerklasse LDK 24-85, blauer Engel (siehe IFEU 2006).	
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja	
- Preis	Ja**	
- Zeitaufwand		
Zwischenfazit	Ja Interne klimafreundlichere und realistische Alternative verfügbar	
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

^{*} Das Marktforschungsinstitut TNS Emnid wies Ende 2005 in einer bundesweiten repräsentativen Umfrage nach, dass bei identischem Inhalt ein auf Recyclingpapier gedrucktes Magazin als dem weißen Primärfaserpapier gleichwertig empfunden wurde. Etliche Großunternehmen arbeiten seit Jahrzehnten mit Recyclingpapier und bestätigen dessen Farbwiedergabe und Bildqualität bei Drucken und Kopien (UBA, Druckerzeugnisse).

^{**} Faustformel: Ein Recyclingpapier der 60er Weiße ("presseweiß") kostet in der Regel rund 15 Prozent weniger als ein vergleichbares Primärfaserpapier, die 70er Weiße rund 10 Prozent, die 80er Weiße rund 5 Prozent weniger (UBA, Druckerzeugnisse).

Anmerkungen

Die CO₂-Bilanz beim Drucken hängt vor allem vom eingesetzten Papier ab. Hier gilt die Grundregel für das Gesamtsystem aus Holzanbau, Import, Export, Verarbeitung und Recycling: Je höher der Recyclinganteil ist, desto klimafreundlicher.

Das UBA stellt fest: "Deutschland ist Europas größter Papierproduzent und bedeutendstes Papier-Exportland. Rund 80 Prozent der hier verarbeiteten Primärfasern stammen aus Importen. Damit ist der umweltbelastendste Teil der Papierherstellung ins Ausland verlagert. Derzeit stammen 40 Prozent des in Deutschland eingesetzten Zellstoffs und fertigen Papiers aus Skandinavien. Finnland, neben Schweden unser Hauptlieferant für Papier, importiert wiederum einen Teil seines Rohholzes aus Russland, wo für die Holzbeschaffung auch Urwälder eingeschlagen werden. 13 Prozent seiner Primärfasern bezieht Deutschland aus Kanada, auch hier sind Urwälder durch Holzeinschlag bedroht. Neben den nordischen sind von der Zerstörung auch tropische Regionen betroffen, da bspw. Deutschland fast ein Viertel des Zellstoffs aus Brasilien und geringere Mengen aus Chile, Uruguay und Indonesien importiert. In diesen Ländern schwindet der Urwaldbestand weiterhin in dramatischem Ausmaß. Zu großen Teilen wird das Holz illegal eingeschlagen. Unsere hohe Zellstoffnachfrage trägt maßgeblich zur weltweiten Waldzerstörung bei.

Um der wachsenden Holznachfrage bei schwindenden Primärwäldern nachzukommen, werden zunehmend Plantagen angelegt. Teils geschieht dies auf Brachflächen, teils werden Urwälder gerodet, um schnell wachsende Baumarten wie Eukalyptus anzupflanzen, die bei kurzer Umtriebszeit hohe Erträge versprechen. Doch die Monokulturen laugen durch ihren einseitigen Nährstoffbedarf die Böden aus, sind empfindlich gegenüber Schädlingsbefall und Sturmschäden, verlangen hohe Pestizid- und Düngereinsätze und verschmutzen die Wasserressourcen und Böden. Vielfach werden durch die Plantagen Landrechte verletzt: Waldbewohnern und Kleinbauern wird die Lebensgrundlage entzogen, weil wertvolle Flächen, die zur Versorgung mit Grundnahrungsmitteln nötig wären, in artenarme Plantagen umgewandelt werden und kaum Einkommensquellen für die ansässige Bevölkerung bieten." (Quelle: www.umweltbundesamt.de/papier-druckerzeugnisse).

Das Angebot "klimaneutral Drucken" kann aber die Papierherkunft der Druckerei gar nicht einbeziehen, da selbst die Papierimporteure die Spuren des Papiers nicht genau zurückverfolgen und damit nicht die Frage beantworten können, wie nachhaltig und CO₂-intensiv der Herkunftswald bewirtschaftet wurde.

Eine klimafreundliche Zukunft des Druckens muss deswegen vor allem die Steigerung des Recyclinggrades des bedruckten Papiers betreffen, den die Druckereien heute schon selbst durch ihr Angebot an die Kunden steuern. Dies ist die bessere Alternative, die aus Klimasicht der Kompensation vorzuziehen ist.

7.7 Andere Güter (T-Shirts, Blumenerde, Rosen)

	T-Shirt Baumwolle	
Treibhausgasintensive Prozesse	- Anbau (Flächenverbrauch, Energie, Bewässerung) - Produktion, Transport	
	Kriterium 1: Alternative verfügbar?	
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Baumwolle aus ökologischer Erzeugung, heimische Fertigung des Produkts	Nein
Alternative ist klimafreundlicher?	Ja Schonendere Anbaumethoden und reduzierte Transportwege	
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja	
- Preis	Ja (hängt vom Produkt ab)	
- Zeitaufwand		
Zwischenfazit	Ja Interne klimafreundlichere und realistische Alternative ver	fügbar
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

Konventionelle Blumenerde (mit Torf)

Treibhausgasintensive Prozesse

- Vernichtung von CO₂-Senken durch Torfabbau; Quelle: WWF 2010
 Eingriff in das lokale Ökosystem durch Zerstörung der Moore

Kriterium 1: Alternative verfügbar?

	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Blumenerde ohne Torf	Nein
Alternative ist klimafreundlicher?	Ja	
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja	
- Preis	Ja	
- Zeitaufwand		
Zwischenfazit	Ja Interne klimafreundlichere und realistische Alternative verfügbar	
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

	Transfair Rosen aus Kenia	
Treibhausgasintensive Prozesse	- Anbau (Flächenverbrauch, Energie, Bewässerung) - Transport	
Kriterium 1: Alternative verfügbar?		
	Interne Alternative	Externe Alternative
Alternative existiert?	Ja Rosen aus heimischem Anbau	Ja Alternative heimische jahreszeitliche Blumen
Alternative ist klimafreundlicher?	Ja verkürzte Transportwege	Ja
Alternative ist realistisch?		
- Funktion und Eigenschaften	Ja (Verfügbarkeit abhängig von der Jahreszeit)	Ja
- Preis	Ja	Ja
- Zeitaufwand		
Zwischenfazit	Ja Interne und externe klimafreundlichere und realistische Alternative verfügbar	
Fazit	Kompensation nicht sinnvoll (Produktklasse II)	

Anmerkung: Ob die Käufer von Rosen im Winter den Weihnachtsstern als alternativen Liebesbeweis akzeptieren, mag von Fall zu Fall anders beurteilt werden. Aus Klimasicht ist klar, dass der Import von Blumen aus anderen Kontinenten nicht sinnvoll ist, solange die Welt nicht zu 100% auf erneuerbare Energien umgestellt ist und das Energieproblem gelöst. Ob zu diesem Zeitpunkt dann Importblumen noch en vogue sind, kann an dieser Stelle nicht beantwortet werden.

8 Literaturverzeichnis

BR 2012: Im Herbst kommt der Burger aus dem Labor. In:

http://www.br.de/themen/wissen/hamburger-invitro-kunstfleisch100.html, (02/2012)

BZ 2012: Ein Hamburger aus dem Labor. In:

http://www.berliner-zeitung.de/teil-1--ernaehrung/interview-zu-kunstfleisch-ein-hamburgeraus-dem-labor,16311066,16296772.html, (07/2012)

BVDF 2012: Fleischverzehr in Europa. In:

http://www.bvdf.de/aktuell/europa_fleischverzehr_tabelle/, (07/2012)

DEN ELZEN, MICHAEL und HÖHNE, NIKLAS 2008: Reductions of greenhouse gas emissions in Annex I and non-Annex I countries for meeting concentration stabilisation targets. In:

Climatic Change 91, S. 249-274, (11/2008)

DIN 2012: New standard defines carbon footprint of products. In:

http://www.din.de/cmd?level=tpl-artikel&cmstextid=158242&bcrumblevel=1&languageid=en, (06/2012)

DIW 2012: CCS-Technologie ist für die Energiewende gestorben. In: http://www.diw.de/sixcms/detail.php?id=diw 01.c.392660.de, (05/2012)

EDENHOFER, OTTMAR ET AL. 2009: The Economics of Decarbonization. Report of the RECIPE project. Potsdam-Institute for Climate Impact Research, Potsdam (2009)

EEX 2012: Preis EU Emission Allowances der Handelsperiode 2008–2012, Jahresrückblick.

http://www.eex.com/de/Marktdaten/Handelsdaten/Emissionsrechte/EU%20Emission%20Allowances%20|%20Spotmarkt/EU%20Emission%20Allowances%20Chart%20|%20Spotmarkt/spot-eua-chart/2012-06-12/1/0/1y/p2, (06/2012)

EPA 2012: Global Greenhouse Gas Data. In:

http://www.epa.gov/climatechange/emissions/globalghg.html, (05/2012)

EU 2011: A Roadmap for moving to a competitive low carbon economy in 2050. In: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0112:FIN:EN:PDF, (03/2011)

EU 2012: The 2°C target. Information Reference Document. In:

http://ec.europa.eu/clima/policies/international/negotiations/future/docs/brochure_2c_en.pdf, (06/2012)

FAO 2012: FAO Statistical Yearbook 2012. In:

http://www.fao.org/docrep/015/i2490e/i2490e00.htm, (08/2012)

GHG-STANDARD: Product Life Cycle Accounting and Reporting Standard. In: http://www.ghgprotocol.org/standards/product-standard, (06/2012)

GREENDSL 2012: Produkt. In:

http://www.greendsl.com/index.php?produkt, (09/2012)

GUPTA, S. 2007: Policies, Instruments and Co-operative Arrangements. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

HEISE 2011: Asus berechnet CO₂-Bilanz eines Notebooks. In:

http://www.heise.de/mobil/meldung/Asus-berechnet-CO₂-Bilanz-eines-Notebooks-1398680.html, (12/2010)

HÖHNE, NIKLAS UND MOLTMANN, SARA 2009: Sharing the effort under a global carbon budget. In:

assets.panda.org/downloads/wwf_ecofys_carbon_budget_final.pdf, (08/2009)

ICCT 2005: Meeting the Climate Challenge. In:

http://www.americanprogress.org/kf/climatechallenge.pdf, (01/2005)

IFEU 2006, Gromke, U., Detzel, A.: Ökologischer Vergleich von Büropapieren in Abhängigkeit vom Faserrohstoff, Heidelberg 2006

IFEU 2010: Kompensation von CO₂-Emissionen. Institut für Energie- und Umweltforschung Heidelberg GmbH (11/2010)

IM 2011: Welt Bruttoinlandsprodukt. In:

http://www.indexmundi.com/de/welt/bruttoinlandsprodukt %28bip%29.html, (05/0212)

INITIATIVE2GRAD 2009: Climate Protection for Everyone! In:

http://www.initiative2grad.de/images/pdfs/klimabroschuere_engl_v3_einzel1.pdf, (01/2009)

IPCC 2007: Climate Change 2007: Synthesis Report. In:

http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf, (11/2007)

IPCC 2007b: Summary for Policymakers. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (05/2007)

IPCC 2008: Emission reduction trade-offs for meeting concentration targets. In: http://www.ipcc.ch/pdf/presentations/briefing-bonn-2008-06/emission-reduction-trade-offs.pdf, (06/2008)

JAEGER, CARLO C. 2010: Warum zwei Grad? In:

http://www.european-climate-forum.net/fileadmin/ecf-documents/publications/articles-and-papers/jaeger_jaeger_warum-zwei-grad.pdf, (2010)

HMUELV 2012: Energie sparen bei Heizung und Strom. In:

Energiesparinformation 5. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, überarbeitete Ausgabe 04/2012

LUHMANN, HANS-JOCHEN UND STERK, WOLFGANG 2008: Klimaziele zu Hause erreichen oder wo es am billigsten ist?Der »Clean Development Mechanism« als

klimaregime- interner Investitionsmittelgenerator. In: Internationale Politik und Gesellschaft Online: International Politics and Society 2 (2008)

ÖKO 2007: Treibhausgasemissionen durch Erzeugung und Verarbeitung von Lebensmitteln. Arbeitspapier. In:

http://www.oeko.de/oekodoc/328/2007-011-de.pdf, (05/2012)

ÖKO 2010: CO₂-Label sind der falsche Weg. In: eco@work, Ausgabe April 2010 (04/2010)

NZZ 2008: Fleisch aus dem Labor statt von der Weide. In:

http://www.nzz.ch/nachrichten/forschung und technik/fleisch aus dem labor statt von de rweide 1.1388778.html, (12/08)

PAS-2050: Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. In:

http://www.bsigroup.com/upload/Standards%20&%20Publications/Energy/PAS2050.pdf, (06/2012)

PCF-PROJEKT 2009: Product Carbon Footprinting – Ein geeigneter Weg zu klimaverträglichen Produkten und deren Konsum? Ergebnisbericht. In: http://www.pcf-projekt.de/files/1241099725/ergebnisbericht 2009.pdf, (2009)

PROGNOS 2010: Dokumentation Verbraucherbefragung Werbung. In: http://www.verbraucherfuersklima.de/cps/rde/xbcr/projektklima/Verbraucherbefragung-Werbung-Prognos.pdf, (05/2010)

SANTARIUS, TILMANN 2012: Der Rebound-Effekt. Über die unerwünschten Folgen der erwünschten Energieeffizienz. Wuppertal Institut für Klima, Umwelt, Energie GmbH, (03/2012)

UBA Druckerzeugnisse: www.umweltbundesamt.de/papier-druckerzeugnisse aufgerufen am 30.04. 2015

UBA 2008: Leitfaden zur freiwilligen Kompensation von Treibhausgasemissionen. Umweltbundesamt (10/2008)

UBA 2010: Analyse des deutschen Marktes zur freiwilligen Kompensation von Treibhausgasemissionen. Umweltbundesamt (10/2010)

UNFCCC 2011: National greenhouse gas inventory data for the period 1990–2009. In: http://unfccc.int/resource/docs/2011/sbi/eng/09.pdf, (12/2011)

VEBU 2011: Life Cycle Assessment von Fleischalternativprodukten. In: https://vebu.de/aktuelles/pressemitteilungen/1120-pm-95-prozent-weniger-klimagase-durch-pflanzenfleisch, (12/2011)

WAGNER, HERMANN-JOSEF ET AL. 2007: CO₂-Emissionen der Stromerzeugung. In: BWK Bd. 59 Nr. 10 (2007)

WGBU 2011: Hauptgutachten 2011.

WWF 2010: Moore im Klimawandel. In: http://www.wwf.at/de/moore/, (12/2010)

ZEIT 2012: "Smart Routing" und Biosprit. In:

http://www.zeit.de/zeit-wissen/2012/02/Gruenes-Fliegen-LT/seite-2, (05/2012)